10 research outputs found

    CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy

    Get PDF
    We have studied the photodynamic properties of novel CdTe quantum dots—methylene blue hybrid photosensitizer. Absorption spectroscopy, photoluminescence spectroscopy, and fluorescence lifetime imaging of this system reveal efficient charge transfer between nanocrystals and the methylene blue dye. Near-infrared photoluminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the growth of HepG2 and HeLa cancerous cells were also performed, they point toward an improvement in the cell kill efficiency for the methylene blue-semiconductor nanocrystals hybrid system

    Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities

    Get PDF
    In recent years, a lot of effort has been made to achieve controlled delivery of target particles to the hotspots of plasmonic nanoantennas, in order to probe and/or exploit the extremely large field enhancements produced by such structures. While in many cases such high fields are advantageous, there are instances where they should be avoided. In this work, we consider the implications of using the standard nanoantenna geometries when colloidal quantum dots are employed as target entities. We show that in this case, and for various reasons, dimer antennas are not the optimum choice. Plasmonic ring cavities are a better option despite low field enhancements, as they allow collective coupling of many quantum dots in a reproducible and predictable manner. In cases where larger field enhancements are required, or for larger quantum dots, nonconcentric ring-disk cavities can be employed instead

    An investigation of the link between the bacterial derived queuine molecule and tyrosine production

    No full text
    THESIS 9264Queuine, a dietary derived 7-deazaguanine molecule, has previously been shown to prevent lethality and other symptoms in germ-free mice that were maintained on a tyrosine-free diet. This work suggested a link between queuine and tyrosine biosynthesis or tyrosine utilisation in higher eukaryotes

    Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation.

    No full text
    Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Since it is exclusively synthesised by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine-a non-essential amino acid-from the diet [Marks T, Farkas WR (1997) Biochem Biophys Res Commun 230:233-7]. Here we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine modified transfer RNA, by disruption of the tRNA guanine transglycosylae (TGT) enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from TGT deficient animals indicate normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes

    Queuosine Deficiency in Eukaryotes Compromises Tyrosine Production through Increased Tetrahydrobiopterin Oxidation*

    No full text
    Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T., and Farkas, W. R. (1997) Biochem. Biophys. Res. Commun. 230, 233–237). Here, we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine-modified transfer RNA, by disruption of the tRNA guanine transglycosylase enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from tRNA guanine transglycosylase-deficient animals indicates normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma, and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes

    Highly Sensitive Single Domain Antibody–Quantum Dot Conjugates for Detection of HER2 Biomarker in Lung and Breast Cancer Cells

    No full text
    Despite the widespread availability of immunohistochemical and other methodologies for screening and early detection of lung and breast cancer biomarkers, diagnosis of the early stage of cancers can be difficult and prone to error. The identification and validation of early biomarkers specific to lung and breast cancers, which would permit the development of more sensitive methods for detection of early disease onset, is urgently needed. In this paper, ultra-small and bright nanoprobes based on quantum dots (QDs) conjugated to single domain anti-HER2 (human epidermal growth factor receptor 2) antibodies (sdAbs) were applied for immunolabeling of breast and lung cancer cell lines, and their performance was compared to that of anti-HER2 monoclonal antibodies conjugated to conventional organic dyes Alexa Fluor 488 and Alexa Fluor 568. The sdAbs–QD conjugates achieved superior staining in a panel of lung cancer cell lines with differential HER2 expression. This shows their outstanding potential for the development of more sensitive assays for early detection of cancer biomarkers
    corecore