59 research outputs found

    The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dog is an important model organism and it is considered to be closer to humans than rodents regarding metabolism and responses to drugs. The close relationship between humans and dogs over many centuries has lead to the diversity of the canine species, important genetic discoveries and an appreciation of the effects of old age in another species. The superfamily of G protein-coupled receptors (GPCRs) is one of the largest gene families in most mammals and the most exploited in terms of drug discovery. An accurate comparison of the GPCR repertoires in dog and human is valuable for the prediction of functional similarities and differences between the species.</p> <p>Results</p> <p>We searched the dog genome for non-olfactory GPCRs and obtained 353 full-length GPCR gene sequences, 18 incomplete sequences and 13 pseudogenes. We established relationships between human, dog, rat and mouse GPCRs resolving orthologous pairs and species-specific duplicates. We found that 12 dog GPCR genes are missing in humans while 24 human GPCR genes are not part of the dog GPCR repertoire. There is a higher number of orthologous pairs between dog and human that are conserved as compared with either mouse or rat. In almost all cases the differences observed between the dog and human genomes coincide with other variations in the rodent species. Several GPCR gene expansions characteristic for rodents are not found in dog.</p> <p>Conclusion</p> <p>The repertoire of dog non-olfactory GPCRs is more similar to the repertoire in humans as compared with the one in rodents. The comparison of the dog, human and rodent repertoires revealed several examples of species-specific gene duplications and deletions. This information is useful in the selection of model organisms for pharmacological experiments.</p

    Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Adhesion </it>G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several <it>Adhesion </it>GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of <it>Adhesion </it>GPCRs are still poorly studied orphans with unknown functions.</p> <p>Results</p> <p>In this study we performed the extensive tissue localization analysis of the entire <it>Adhesion </it>GPCR family in rat and mouse. By applying the quantitative real-time PCR technique we have produced comparable expression profile for each of the members in the <it>Adhesion </it>family. The results are compared with literature data and data from the Allen Brain Atlas project. Our results suggest that the majority of the <it>Adhesion </it>GPCRs are either expressed in the CNS or ubiquitously. In addition the <it>Adhesion </it>GPCRs from the same phylogenetic group have either predominant CNS or peripheral expression, although each of their expression profile is unique.</p> <p>Conclusion</p> <p>Our findings indicate that many of <it>Adhesion </it>GPCRs are expressed, and most probably, have function in CNS. The related <it>Adhesion </it>GPCRs are well conserved in their structure and interestingly have considerable overlap in their expression profiles, suggesting similarities among the physiological roles for members within many of the phylogenetically related clusters.</p

    Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The melanocortin (MC) receptors have a key role in regulating body weight and pigmentation. They belong to the rhodopsin family of G protein-coupled receptors (GPCRs). The purpose of this study was to identify ancestral MC receptors in agnathan, river lamprey.</p> <p>Results</p> <p>We report cloning of two MC receptors from river lamprey. The lamprey receptors, designated MCa and MCb, showed orthology to the MC1 and MC4 receptor subtypes, respectively. The molecular clock analysis suggested that lamprey MC receptor genes were not duplicated recently and diverged from each other more than 400 MYR ago. Expression and pharmacological characterization showed that the lamprey MCa receptor was able to bind and be activated by both lamprey and human MSH peptides. The lamprey MCa receptor had relatively high affinity for ACTH derived peptides similarly to the fish MC receptors. We found that both of the lamprey MC receptors were expressed in skin, while the MCb receptor was also found in liver, heart and skeletal muscle.</p> <p>Conclusion</p> <p>This study shows presence of MC receptors in agnathans indicating early signs of specific functions of melanocortin receptor subtypes.</p

    Многоканальный регистратор для унифицированных сигналов промышленного оборудования

    Get PDF
    Chondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS). Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS

    The orphan G protein-coupled receptor gene GPR178 is evolutionary conserved and altered in response to acute changes in food intake

    Get PDF
    G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward

    Function, Pharmacology, Evolution and Anatomical Localization of G Protein-Coupled Receptors and Solute Carriers

    No full text
    The G protein-coupled receptors (GPCRs) and solute carriers (SLC) are two large families of membrane-bound proteins. The aim of this study was to characterize these two families in terms of evolution and function. The melanocortin (MC) receptors belong to the Rhodopsin family of GPCRs and we cloned the MC4 and MC5 receptors from the rainbow trout, MC3 and MC5 from the spiny dogfish and MCa and MCb from the river lamprey. Pharmacological characterization of the cloned MC receptors demonstrated higher affinity for adrenocorticotropic hormone (ACTH) compared to melanocyte stimulating hormone (MSH) peptides (alpha-, beta- and gamma-MSH). We performed expression analysis with reverse transcription PCR, which showed that the MC4 and MC5 receptors in the rainbow trout are expressed centrally as well as in peripheral tissues. The dogfish MC3 and MC5 receptors were expressed in the brain, while the lamprey MCa and MCb receptors were expressed in the periphery. An extensive tissue localization analysis was performed for the entire family of Adhesion GPCRs in the rat and mouse. Using quantitative real-time PCR (qRT-PCR) we discovered that the majority of GPCRs were expressed either specifically in the CNS or ubiquitously in the CNS and peripheral tissues. We identified all non-olfactory GPCRs in the dog and classified them into Adhesion, Frizzled, Glutamate, Rhodopsin and Secretin families. The dog GPCR repertoire seemed to be more similar to the human repertoire than to the repertoires in rodents. Solute carrier family 25 includes mitochondrial membrane transporters. Using bioinformatics techniques we identified 14 novel members of the SLC25 family, which now has 46 members. We identified orthologs of the novel SLC25 family members in yeast and performed expression analysis of 9 of them with qRT-PCR on a panel containing 30 central and peripheral tissues from the rat. To conclude, this study has expanded our knowledge of the repertoire of genes coding for membrane-bound proteins and provided information about their functional roles

    Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes

    No full text
    Glycosaminoglycans are sulfated polysaccharide molecules, essential for many biological processes. The 6-O sulfation of glycosaminoglycans is carried out by carbohydrate 6-O sulfotransferases (C6OSTs), previously named Gal/GalNAc/GlcNAc 6-O sulfotransferases. Here, for the first time, we present a detailed phylogenetic reconstruction, analysis of gene synteny conservation and propose an evolutionary scenario for the C6OST family in major vertebrate groups, including mammals, birds, nonavian reptiles, amphibians, lobe-finned fishes, ray-finned fishes, cartilaginous fishes, and jawless vertebrates. The C6OST gene expansion likely started early in the chordate lineage, giving rise to four ancestral genes after the divergence of tunicates and before the emergence of extant vertebrates. The two rounds of whole-genome duplication in early vertebrate evolution (1R/2R) only contributed two additional C6OST subtype genes, increasing the vertebrate repertoire from four genes to six, divided into two branches. The first branch includes CHST1 and CHST3 as well as a previously unrecognized subtype, CHST16 that was lost in amniotes. The second branch includes CHST2, CHST7, and CHST5. Subsequently, local duplications of CHST5 gave rise to CHST4 in the ancestor of tetrapods, and to CHST6 in the ancestor of primates. The teleost-specific gene duplicates were identified for CHST1, CHST2, and CHST3 and are result of whole-genome duplication (3R) in the teleost lineage. We could also detect multiple, more recent lineage-specific duplicates. Thus, the vertebrate repertoire of C6OST genes has been shaped by gene duplications and gene losses at several stages of vertebrate evolution, with implications for the evolution of skeleton, nervous system, and cell-cell interactions
    corecore