30 research outputs found

    Phase Boundaries for Fibril and Metastable Oligomer Formation of Lysozyme

    Get PDF

    \u3csup\u3e1\u3c/sup\u3eH NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers

    Get PDF
    We measured the transbilayer diffusion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in large unilamellar vesicles, in both the gel (Lβ′) and fluid (Lα) phases. The choline resonance of headgroup-protiated DPPC exchanged into the outer leaflet of headgroup-deuterated DPPC-d13 vesicles was monitored using 1H NMR spectroscopy, coupled with the addition of a paramagnetic shift reagent. This allowed us to distinguish between the inner and outer bilayer leaflet of DPPC, to determine the flip-flop rate as a function of temperature. Flip-flop of fluid-phase DPPC exhibited Arrhenius kinetics, from which we determined an activation energy of 122 kJ mol-1. In gel-phase DPPC vesicles, flip-flop was not observed over the course of 250 h. Our findings are in contrast to previous studies of solid-supported bilayers, where the reported DPPC translocation rates are at least several orders of magnitude faster than those in vesicles at corresponding temperatures. We reconcile these differences by proposing a defect-mediated acceleration of lipid translocation in supported bilayers, where long-lived, submicron-sized holes resulting from incomplete surface coverage are the sites of rapid transbilayer movement

    Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils

    Get PDF
    Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path

    Thermodynamic and Kinetic Aspects of Hen Egg White Lysozyme Amyloid Assembly

    Get PDF
    Deposition of protein fibers with a characteristic cross-β sheet structure is the molecular marker associated with human disorders ranging from Alzheimer\u27s disease to type II diabetes and spongiform encephalopathy. Given the large number of non-disease related proteins and peptides that have been shown to form amyloid fibrils in vitro, it has been suggested that amyloid fibril formation represents a generic protein phase transition. In the last two decades it has become clear that the same protein/peptide can assemble into distinct morphologically and structurally amyloid aggregates depending on the solution conditions. Moreover, recent studies have shown that the early stage, oligomeric amyloid assemblies are the main culprit in vivo. We have investigated the amyloid assemblies formed under denaturing conditions for Hen Egg White Lysozyme (HewL) whose human homologue is directly implicated in hereditary non-neuropathic systemic amyloidosis. Our early investigations showed that HewL can aggregate via at least two distinct assembly pathways depending on solution ionic strength at fixed pH, temperature, and protein concentration. By combining Dynamic Light Scattering (DLS), Static Light Scattering (SLS) and Atomic Force Microscopy (AFM) we showed that at low ionic strength, the pathway is characterized by the nucleation and growth of long (several micron), rigid fibrils (RF) via monomers assembly. A second, high ionic strength pathway is characterized by the rapid assembly of monomers into globular oligomers that further polymerize into curvilinear fibrils (aO/CF). At NaCl concentrations above 400 mM, aggregation resulted in precipitate formation. Next, we used Foureir Transform Infrared spectroscopy (FTIR) and an amyloid-specific dye, Thioflavin T (ThT), to show that both RF and (a)O/CF are amyloidogenic species, but they have detectable structural differences. Moreover, we have determined that each assembly pathway has unique SLS, DLS, FTIR and ThT response signatures that help determine the assembly type prior to AFM imaging of aggregates. Taking advantage of the morphological, structural and kinetic signatures for the two distinct HewL amyloid aggregates I mapped out their amyloid aggregates phase diagram spanning over two orders of magnitude in protein concentration and from 50 to 800 mM NaCl in ionic strength. This is the most complete phase diagram for amyloid aggregates of a given protein up to date. The phase diagram has three distinct regions delineated by sharp boundaries. The RF- aO/CF was called Critical Oligomer Concentration, and we commonly refer to “above the COC” as the region were aO/CF are kinetically favored.. In the region of low salt/high protein concentrations, RF were the only amyloid species to nucleate and grow. As both salt and protein concentrations increase, aO/CF become the kinetically favored species, and RF nucleate and grow after several days of incubation. At high protein and high salt concentrations, aO/CF form very fast and eventually lose solubility forming a precipitate (Ppt). Cross-seeding experiments showed that RF is the thermodynamically stable aggregate phase, while the O/CF are the metastable species. Finally, we used the phase diagram to design experiments that would allow us to reveal the RF nucleation mechanism in presence of aO/CF. RF nucleation above the COC can undergo either via internal restructuring of aO/CF (NCC) or through a random coalescence of monomers into a nucleus (NP). The experimental results obtained so far strongly indicate that RF nucleate via NP mechanism both below and above the COC

    Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins

    No full text
    Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-β-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aβ) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aβ binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation
    corecore