38 research outputs found

    Risk stratification in pediatric low-grade glioma and glioneuronal tumor treated with radiation therapy: An integrated clinicopathologic and molecular analysis

    Get PDF
    BackgroundManagement of unresectable pediatric low-grade glioma and glioneuronal tumor (LGG/LGGNT) is controversial. There are no validated prognostic features to guide use of radiation therapy (RT). Our study aimed to identify negative prognostic features in patients treated with RT using clinicopathologic and molecular data and validate these findings in an external dataset.MethodsChildren with non-metastatic, biopsy-proven unresectable LGG/LGGNT treated with RT at a single institution between 1997 and 2017 were identified. Recursive partitioning analysis (RPA) was used to stratify patients into low- and high-risk prognostic groups based on overall survival (OS). CNS9702 data were used for validation.ResultsOne hundred and fifty patients met inclusion criteria. Median follow-up was 11.4 years. RPA yielded low- and high-risk groups with 10-year OS of 95.6% versus 76.4% (95% CI: 88.7%–98.4% vs 59.3%–87.1%, P = 0.003), respectively. These risk groups were validated using CNS9702 dataset (n = 48) (4-year OS: low-risk vs high-risk: 100% vs 64%, P < 0.001). High-risk tumors included diffuse astrocytoma or location within thalamus/midbrain. Low-risk tumors included pilocytic astrocytoma/ganglioglioma located outside of the thalamus/midbrain. In the subgroup with known BRAF status (n = 49), risk stratification remained prognostic independently of BRAF alteration (V600E or fusion). Within the high-risk group, delayed RT, defined as RT after at least one line of chemotherapy, was associated with a further decrement in overall survival (P = 0.021).ConclusionA high-risk subgroup of patients, defined by diffuse astrocytoma histology or midbrain/thalamus tumor location, have suboptimal long-term survival and might benefit from timely use of RT. These results require validation

    Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas.

    Get PDF
    Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively ( P \u3c .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy

    Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas

    Get PDF
    Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively (P < .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy. (C) 2017 by American Society of Clinical Oncolog

    Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas

    Get PDF
    Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors

    Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas

    Full text link
    BACKGROUND Both genetic and methylation analysis have been shown to provide insight into the diagnosis and prognosis of many brain tumors. However, the implication of methylation profiling and its interaction with genetic alterations in pediatric low-grade gliomas (PLGGs) are unclear. METHODS We performed a comprehensive analysis of PLGG with long-term clinical follow-up. In total 152 PLGGs were analyzed from a range of pathological subtypes, including 40 gangliogliomas. Complete molecular analysis was compared with genome-wide methylation data and outcome in all patients. For further analysis of specific PLGG groups, including BRAF p.V600E mutant gliomas, we compiled an additional cohort of clinically and genetically defined tumors from 3 large centers. RESULTS Unsupervised hierarchical clustering revealed 5 novel subgroups of PLGG. These were dominated by nonneoplastic factors such as tumor location and lymphocytic infiltration. Midline PLGG clustered together while deep hemispheric lesions differed from lesions in the periphery. Mutations were distributed throughout these location-driven clusters of PLGG. A novel methylation cluster suggesting high lymphocyte infiltration was confirmed pathologically and exhibited worse progression-free survival compared with PLGG harboring similar molecular alterations (P = 0.008; multivariate analysis: P = 0.035). Although the current methylation classifier revealed low confidence in 44% of cases and failed to add information in most PLGG, it was helpful in reclassifying rare cases. The addition of histopathological and molecular information to specific methylation subgroups such as pleomorphic xanthoastrocytoma-like tumors could stratify these tumors into low and high risk (P = 0.0014). CONCLUSION The PLGG methylome is affected by multiple nonneoplastic factors. Combined molecular and pathological analysis is key to provide additional information when methylation classification is used for PLGG in the clinical setting

    Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro

    No full text
    Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor.</p

    RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology

    No full text
    Gene fusions involving members of the RAF family of protein kinases have recently been identified as characteristic aberrations of low-grade astrocytomas, the most common tumors of the central nervous system in children. While it has been shown that these fusions cause constitutive activation of the ERK/MAPK pathway, very little is known about their formation. Here, we present a detailed analysis of RAF gene fusion breakpoints from a well-characterized cohort of 43 low-grade astrocytomas. Our findings show that the rearrangements that generate these RAF gene fusions may be simple or complex and that both inserted nucleotides and microhomology are common at the DNA breakpoints. Furthermore, we identify novel enrichment of microhomologous sequences in the regions immediately flanking the breakpoints. We thus provide evidence that the tandem duplications responsible for these fusions are generated by microhomology-mediated break-induced replication (MMBIR). Although MMBIR has previously been implicated in the pathogenesis of other diseases and the evolution of eukaryotic genomes, we demonstrate here that the proposed details of MMBIR are consistent with a recurrent rearrangement in cancer. Our analysis of repetitive elements, Z-DNA and sequence motifs in the fusion partners identified significant enrichment of the human minisatellite conserved sequence/χ-like element at one side of the breakpoint. Therefore, in addition to furthering our understanding of low-grade astrocytomas, this study provides insights into the molecular mechanistic details of MMBIR and the sequence of events that occur in the formation of genomic rearrangements
    corecore