343 research outputs found
Theory of Current-Driven Domain Wall Motion: A Poorman's Approach
A self-contained theory of the domain wall dynamics in ferromagnets under
finite electric current is presented.
The current is shown to have two effects; one is momentum transfer, which is
proportional to the charge current and wall resistivity (\rhow), and the
other is spin transfer, proportional to spin current.
For thick walls, as in metallic wires, the latter dominates and the threshold
current for wall motion is determined by the hard-axis magnetic anisotropy,
except for the case of very strong pinning.
For thin walls, as in nanocontacts and magnetic semiconductors, the
momentum-transfer effect dominates, and the threshold current is proportional
to \Vz/\rhow, \Vz being the pinning potential
Current-induced domain wall motion in Rashba spin-orbit system
Current-induced magnetic domain wall motion, induced by transfer of spin
transfer effect due to exchange interaction, is expected to be useful for next
generation high-density storages. We here show that efficient domain wall
manipulation can be achieved by introduction of Rashba spin-orbit interaction,
which induces spin precession of conduction electron and acts as an effective
magnetic field. Its effect on domain wall motion depends on the wall
configuration. We found that the effect is significant for Bloch wall with the
hard axis along the current, since the effective field works as or
field-like term and removes the threshold current if in extrinsic pinning is
absent. For N\'eel wall and Bloch wall with easy axis perpendicular to Rashba
plane, the effective field induces a step motion of wall corresponding to a
rotation of wall plane by the angle of approximately at current lower
than intrinsic threshold. Rashba interaction would therefore be useful to
assist efficient motion of domain walls at low current
Diffusive versus local spin currents in dynamic spin pumping systems
Using microscopic theory, we investigate the properties of a spin current
driven by magnetization dynamics. In the limit of smooth magnetization texture,
the dominant spin current induced by the spin pumping effect is shown to be the
diffusive spin current, i.e., the one arising from only a diffusion associated
with spin accumulation. That is to say, there is no effective field that
locally drives the spin current. We also investigate the conversion mechanism
of the pumped spin current into a charge current by spin-orbit interactions,
specifically the inverse spin Hall effect. We show that the spin-charge
conversion does not always occur and that it depends strongly on the type of
spin-orbit interaction. In a Rashba spin-orbit system, the local part of the
charge current is proportional to the spin relaxation torque, and the local
spin current, which does not arise from the spin accumulation, does not play
any role in the conversion. In contrast, the diffusive spin current contributes
to the diffusive charge current. Alternatively, for spin-orbit interactions
arising from random impurities, the local charge current is proportional to the
local spin current that constitutes only a small fraction of the total spin
current. Clearly, the dominant spin current (diffusive spin current) is not
converted into a charge current. Therefore, the nature of the spin current is
fundamentally different depending on its origin and thus the spin transport and
the spin-charge conversion behavior need to be discussed together along with
spin current generation
Gauge Field Formulation of Adiabatic Spin Torques
Previous calculation of spin torques for small-amplitude magnetization
dynamics around a uniformly magnetized state [J. Phys. Soc. Jpn. {\bf 75}
(2006) 113706] is extended here to the case of finite-amplitude dynamics. This
is achieved by introducing an `` adiabatic'' spin frame for conduction
electrons, and the associated SU(2) gauge field. In particular, the Gilbert
damping is shown to arise from the time variation of the spin-relaxation source
terms in this new frame, giving a new physical picture of the damping. The
present method will allow a `` first-principle'' derivation of spin torques
without any assumptions such as rotational symmetry in spin space.Comment: 4 pages, 3 figure
Existence of vertical spin stiffness in Landau-Lifshitz-Gilbert equation in ferromagnetic semiconductors
We calculate the magnetization torque due to the spin polarization of the
itinerant electrons by deriving the kinetic spin Bloch equations based on the
- model. We find that the first-order gradient of the magnetization
inhomogeneity gives rise to the current-induced torques, which are consistent
to the previous works. At the second-order gradient, we find an effective
magnetic field perpendicular to the spin stiffness filed. This field is
proportional to the nonadiabatic parameter . We show that this vertical
spin stiffness term can significantly modify the domain-wall structure in
ferromagnetic semiconductors and hence should be included in the
Landau-Lifshitz-Gilbert equation in studying the magnetization dynamics.Comment: 7 pages, 4 figure
Cross -cultural Comparisons of Science Education Reform:Japan and the United States
The results of this study comparing teacher perceptions and observed teacher behaviors for teachers from Japan and the U.S. are attributed to cultural differences, difficulty in interpretation of the practices, or differing degrees of confidence in implementing constructivist practices, or a combination of factors remains to be seen. But, this investigation is but a beginning in terms of successes and failures with science education reform initiatives around the world. Looking at these problems globally may be important to assure that current reforms are successful for all and will stimulate continuous progress
A Quantum Analogue of the Jarzynski Equality
A quantum analogue of the Jarzynski equality is constructed. This equality
connects an ensemble average of exponentiated work with the Helmholtz
free-energy difference in a nonequilibrium switching process subject to a
thermal heat bath. To confirm its validity in a practical situation, we also
investigate an open quantum system that is a spin 1/2 system with a scanning
magnetic field interacting with a thermal heat bath. As a result, we find that
the quantum analogue functions well.Comment: 7 pages, 1 figure; to appear in J. Phys. Soc. Jpn. 69 (2000
Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI
A consistent problem with stem/neural progenitor cell transplantation following spinal cord injury (SCI) is poor cell survival and uncontrolled differentiation following transplantation. The current study evaluated the feasibility of enhancing embryonic stem cell-derived neural progenitor cell (ESNPC) viability and directing their differentiation into neurons and oligodendrocytes by embedding the ESNPCs in fibrin scaffolds containing growth factors (GF) and a heparin-binding delivery system (HBDS) in a subacute rat model of SCI. Mouse ESNPCs were generated from mouse embryonic stem cells (ESCs) using a 4-/4+ retinoic acid (RA) induction protocol. The ESNPCs were then transplanted as embryoid bodies (EBs, 70% neural progenitor cells), into the subacute model of SCI. ESNPCs (10 EBs per animal) were implanted directly into the SCI lesion, encapsulated in fibrin scaffolds, encapsulated in fibrin scaffolds containing the HBDS, neurotrophin-3 (NT-3) and platelet derived growth factor (PDGF), or encapsulated in fibrin scaffolds with NT-3 and PDGF with no HBDS. We report here that the combination of the NT-3, PDGF and fibrin scaffold (with or without HBDS) enhanced the total number of ESNPCs present in the spinal cord lesion 2 weeks after injury. In addition, the inclusion of the HBDS with growth factor resulted in an increase in the number of ESNPC-derived NeuN positive neurons. These results demonstrate the ability of fibrin scaffolds and the controlled release of growth factors to enhance the survival and differentiation of neural progenitor cells following transplantation into a SCI model
Cross -cultural Comparisons of Science Education Reform:Japan and the United States
The results of this study comparing teacher perceptions and observed teacher behaviors for teachers from Japan and the U.S. are attributed to cultural differences, difficulty in interpretation of the practices, or differing degrees of confidence in implementing constructivist practices, or a combination of factors remains to be seen. But, this investigation is but a beginning in terms of successes and failures with science education reform initiatives around the world. Looking at these problems globally may be important to assure that current reforms are successful for all and will stimulate continuous progress
Macroscopic Quantum Dynamics of a Free Domain Wall in a Ferromagnet
We study macroscopic quantum dynamics of a free domain wall in a
quasi-one-dimensional ferromagnet by use of the spin-coherent-state path
integral in {\it discrete-time} formalism. Transition amplitudes between
typical states are quantitatively discussed by use of {\it stationary-action
approximation} with respect to collective degrees of freedom representing the
center position and the chirality of the domain wall. It is shown that the
chirality may be loosely said to be canonically conjugate to the center
position; the latter moves with a speed depending on the former. It is
clarified under what condition the center position can be regarded as an
effective free-particle position, which exhibits the phenomenon of wave-packet
spreading. We demonstrate, however, that in some case the non-linear character
of the spin leads to such a dramatic phenomenon of a non-spreading wave packet
as to completely invalidate the free-particle analogy. In the course of the
discussion, we also point out various difficulties associated with the
continuous-time formalism.Comment: 23 pages, REVTEX, 4 figures, submitted to Phys. Rev.
- …