37 research outputs found

    Concomitant Control of Mechanical Properties and Degradation in Resorbable Elastomer-like Materials Using Stereochemistry and Stoichiometry for Soft Tissue Engineering

    Get PDF
    YesComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery

    Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep

    No full text
    Large segmental gaps in bone caused by trauma or disease are typically treated with bone grafts and stiff scaffolds to hold the fractured bone in place, but sometimes these defects fail to heal. To optimize bone regeneration, Pobloth and colleagues modified titanium-mesh scaffold designs to provide specific strains and stresses within the fracture environment. In sheep with critical-sized segmental defects, scaffolds that reduced stress shielding around tibial fractures enhanced bone bridging compared to stiffer scaffolds and shielding plates. Scaffolds can be tuned to evoke specific mechanical and biological responses within bone defects, which could help guide regeneration.Three-dimensional (3D) titanium-mesh scaffolds offer many advantages over autologous bone grafting for the regeneration of challenging large segmental bone defects. Our study supports the hypothesis that endogenous bone defect regeneration can be promoted by mechanobiologically optimized Ti-mesh scaffolds. Using finite element techniques, two mechanically distinct Ti-mesh scaffolds were designed in a honeycomb-like configuration to minimize stress shielding while ensuring resistance against mechanical failure. Scaffold stiffness was altered through small changes in the strut diameter only. Honeycombs were aligned to form three differently oriented channels (axial, perpendicular, and tilted) to guide the bone regeneration process. The soft scaffold (0.84 GPa stiffness) and a 3.5-fold stiffer scaffold (2.88 GPa) were tested in a critical size bone defect model in vivo in sheep. To verify that local scaffold stiffness could enhance healing, defects were stabilized with either a common locking compression plate that allowed dynamic loading of the 4-cm defect or a rigid custom-made plate that mechanically shielded the defect. Lower stress shielding led to earlier defect bridging, increased endochondral bone formation, and advanced bony regeneration of the critical size defect. This study demonstrates that mechanobiological optimization of 3D additive manufactured Ti-mesh scaffolds can enhance bone regeneration in a translational large animal study

    Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications

    No full text
    Copyright © 2008 Elsevier Ltd All rights reserved.Biodegradable polyurethanes offer advantages in the design of injectable or preformed scaffolds for tissue engineering and other medical implant applications. We have developed two-part injectable prepolymer systems (prepolymer A and B) consisting of lactic acid and glycolic acid based polyester star polyols, pentaerythritol (PE) and ethyl lysine diisocyanate (ELDI). This study reports on the formulation and properties of a series of cross linked polyurethanes specifically developed for orthopaedic applications. Prepolymer A was based on PE and ELDI. Polyester polyols (prepolymer B) were based on PE and dl-lactic acid (PEDLLA) or PE and glycolic acid (PEGA) with molecular weights 456 and 453, respectively. Several cross linked porous and non-porous polyurethanes were prepared by mixing and curing prepolymers A and B and their mechanical and thermal properties, in vitro (PBS/37 degrees C/pH 7.4) and in vivo (sheep bi-lateral) degradation evaluated. The effect of incorporating beta-tricalcium phosphate (beta-TCP, 5 microns, 10 wt.%) was also investigated. The cured polymers exhibited high compressive strength (100-190 MPa) and modulus (1600-2300 MPa). beta-TCP improved mechanical properties in PEDLLA based polyurethanes and retarded the onset of in vitro and in vivo degradation. Sheep study results demonstrated that the polymers in both injectable and precured forms did not cause any surgical difficulties or any adverse tissue response. Evidence of new bone growth and the gradual degradation of the polymers were observed with increased implant time up to 6 months.Raju Adhikari, Pathiraja A. Gunatillake, Ian Griffiths, Lisa Tatai, Malsha Wickramaratna, Shadi Houshyar, Tim Moore, Roshan T.M. Mayadunne, John Field, Margaret McGee and Tania Carbonehttp://www.elsevier.com/wps/find/journaldescription.cws_home/30392/description#descriptio
    corecore