19 research outputs found

    The Movember Global Action Plan 1 (GAP1) : Unique Prostate Cancer Tissue Microarray Resource

    Get PDF
    BACKGROUND: The need to better understand the molecular underpinnings of the heterogeneous outcomes of patients with prostate cancer is a pressing global problem and a key research priority for Movember. To address this, the Movember Global Action Plan 1 Unique tissue microarray (GAP1-UTMA) project constructed a set of unique and richly annotated tissue microarrays (TMA) from prostate cancer samples obtained from multiple institutions across several global locations. METHODS: Three separate TMA sets were built that differ by purpose and disease state. RESULTS: The intended use of TMA1 (Primary Matched LN) is to validate biomarkers that help determine which clinically localized prostate cancers with associated lymph node metastasis have a high risk of progression to lethal castration-resistant metastatic disease, and to compare molecular properties of high-risk index lesions within the prostate to regional lymph node metastases resected at the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed to address questions regarding risk of castration-resistant prostate cancer (CRPC) and response to suppression of the androgen receptor/androgen axis, and characterization of the castration-resistant phenotype. TMA3 (CRPC Met Heterogeneity)'s intended use is to assess the heterogeneity of molecular markers across different anatomic sites in lethal prostate cancer metastases. CONCLUSIONS: The GAP1-UTMA project has succeeded in combining a large set of tissue specimens from 501 patients with prostate cancer with rich clinical annotation. IMPACT: This resource is now available to the prostate cancer community as a tool for biomarker validation to address important unanswered clinical questions around disease progression and response to treatment.publishedVersionPeer reviewe

    Implication of β2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells

    No full text
    The β2-adrenergic receptor has been shown to be involved in neuroendocrine differentiation and to contribute to the development of aggressive prostate cancer. In this study we have investigated whether miR-196a plays a role in the regulation of the β2-adrenergic receptor in the LNCaP prostate cancer cell line. Our results show that the expression of miR-196a is elevated in LNCaP prostate cancer cells with reduced levels of β2-adrenergic receptor after stably transfection with three different shRNAs. Furthermore, treatment with β-blockers showed that this upregulation is strictly related to the low levels of β2-adrenergic receptor and not to the inhibition of the receptor signaling activity. Finally, we found that the reduced ability of LNCaP cells with low levels of β2-adrenergic receptor to initiate neuroendocrine differentiation under androgen depletion conditions is mediated by miR-196a. In conclusion, this study provides the rational for a role of miR-196a in the β2-adrenergic receptor mediated neuroendocrine differentiation of LNCaP prostate cancer cells

    Implication of β2-adrenergic receptor and miR-196a correlation in neurite outgrowth of LNCaP prostate cancer cells

    No full text
    The β2-adrenergic receptor has been shown to be involved in neuroendocrine differentiation and to contribute to the development of aggressive prostate cancer. In this study we have investigated whether miR-196a plays a role in the regulation of the β2-adrenergic receptor in the LNCaP prostate cancer cell line. Our results show that the expression of miR-196a is elevated in LNCaP prostate cancer cells with reduced levels of β2-adrenergic receptor after stably transfection with three different shRNAs. Furthermore, treatment with β-blockers showed that this upregulation is strictly related to the low levels of β2-adrenergic receptor and not to the inhibition of the receptor signaling activity. Finally, we found that the reduced ability of LNCaP cells with low levels of β2-adrenergic receptor to initiate neuroendocrine differentiation under androgen depletion conditions is mediated by miR-196a. In conclusion, this study provides the rational for a role of miR-196a in the β2-adrenergic receptor mediated neuroendocrine differentiation of LNCaP prostate cancer cells

    Hormonal regulation of beta(2)-adrenergic receptor level in prostate cancer

    No full text
    BACKGROUND. Androgen deprivation is the only effective systemic therapy available for patients with prostatic carcinoma, but is associated with a gradual transition to a hormone-refractory prostate cancer (HRCAP) in which ligand-independent activation of the androgen receptor has been implicated. The beta(2)-adrenergic receptor (beta(2)-AR) is a well-known activator of the androgen receptor. METHODS. Prostatic cell lines were analyzed using cDNA micro-array, real time RT-PCR, radioligand binding assay, cAMP measurements, transfection and thymidine incorporation assay. Clinical specimens were studied by immunohistochemistry and Affymetrix microarrays. RESULTS. Here, we show that beta(2)-AR was transiently down-regulated both at mRNA- and protein levels when hormone-sensitive prostate cancer cells, LNCaP, were cultured in steroid stripped medium (charcoal-stripped fetal calf serum) or when the cells were treated with the anti-androgen, bicalutamide (Casodex). The number of beta-adrenergic receptors was modestly up-regulated in androgen independent cell lines (LNCaP-C4, LNCaP-C4-2 and DU145) compared to LNCaP. Triiodothyronine (T3) increased the level of beta(2)-AR and the effect of T3 was inhibited by bicalutamide. Immunohistochemical staining of human prostate specimens showed high expression of beta(2)-AR in glandular, epithelial cells and increased expression in malignant cells compared to benign hyperplasia and normal tissue. Interestingly, beta(2)-AR mRNA was strongly down-regulated by androgen ablation therapy of prostate cancer patients. CONCLUSION. The level of beta(2)-AR was increased by T3 in prostatic adenocarcinoma cells and reduced in prostate cancer patients who had received androgen ablation therapy for 3 months

    Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research

    Get PDF
    Abstract Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine

    Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research

    Get PDF
    Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine

    Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research

    No full text
    Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine

    Correlation of expression of Major Vault Protein with androgen receptor and immune checkpoint protein B7-H3, and with poor prognosis in prostate cancer

    Get PDF
    Prostate cancer diagnosis and early stratification is an important aspect to avoid undertreatment of high-risk prostate cancer patients. Major Vault Protein (MVP) has been proposed as a prognostic biomarker in prostate cancer. PTEN and the immune checkpoint protein B7-H3 interact with MVP and are important in prostate cancer progression and therapy response. We evaluated the expression of MVP by immunohistochemistry of tissue microarray samples from a retrospective cohort consisting of 119 prostate cancer patients. We correlated the protein expression of MVP with clinicopathological characteristics, and protein expression of androgen receptor (AR), PTEN, immune checkpoint proteins B7-H3 and PD-L1. We found MVP to be expressed in 53 % of prostate tumors, and correlated positively with biochemical recurrence (ρ = 0.211/p = 0.021). Furthermore, we found positive correlation of MVP expression with expression of AR (ρ = 0.244/p = 0.009) and the immune checkpoint protein B7-H3 (ρ = 0.200/p = 0.029), but not with PD-L1 (ρ = 0.152/p = 0.117) or PTEN expression (ρ = − 0.034/p = 0.721). Our findings support the notion that expression of MVP is associated with poor prognosis in prostate cancer. The correlation between MVP and immune checkpoint protein B7-H3 in prostate cancer suggests a role for MVP in immunoregulation and drug resistance

    Proteomic analyses identify major vault protein as a prognostic biomarker for fatal prostate cancer

    Get PDF
    The demographic shift toward an older population will increase the number of prostate cancer cases. A challenge in the treatment of prostate cancer is to avoid undertreatment of patients at high risk of progression following curative treatment. These men can benefit from early salvage treatment. An explorative cohort consisting of tissue from 16 patients who underwent radical prostatectomy, and were either alive or had died from prostate cancer within 10 years postsurgery, was analyzed by mass spectrometry analysis. Following proteomic and bioinformatic analyses, major vault protein (MVP) was identified as a putative prognostic biomarker. A publicly available tissue proteomics dataset and a retrospective cohort of 368 prostate cancer patients were used for validation. The prognostic value of the MVP was verified by scoring immunohistochemical staining of a tissue microarray. High level of MVP was associated with more than 4-fold higher risk for death from prostate cancer (hazard ratio = 4.41, 95% confidence interval: 1.45–13.38; P = 0.009) in a Cox proportional hazard models, adjusted for Cancer of the Prostate Risk Assessments Post-surgical (CAPRA-S) score and perineural invasion. Decision curve analyses suggested an improved standardized net benefit, ranging from 0.06 to 0.18, of adding MVP onto CAPRA-S score. This observation was confirmed by receiver operator characteristics curve analyses for the CAPRA-S score versus CAPRA-S and MVP score (area under the curve: 0.58 versus 0.73). From these analyses, one can infer that MVP levels in combination with CAPRA-S score might add onto established risk parameters to identify patients with lethal prostate cancer

    Role of serum response factor expression in prostate cancer biochemical recurrence

    No full text
    BACKGROUND: Up to a third of prostate cancer patients fail curative treatment strategies such as surgery and radiation therapy in the form of biochemical recurrence (BCR) which can be predictive of poor outcome. Recent clinical trials have shown that men experiencing BCR might benefit from earlier intervention post-radical prostatectomy (RP). Therefore, there is an urgent need to identify earlier prognostic biomarkers which will guide clinicians in making accurate diagnosis and timely decisions on the next appropriate treatment. The objective of this study was to evaluate Serum Response Factor (SRF) protein expression following RP and to investigate its association with BCR.MATERIALS AND METHODS: SRF nuclear expression was evaluated by immunohistochemistry (IHC) in TMAs across three international radical prostatectomy cohorts for a total of 615 patients. Log-rank test and Kaplan-Meier analyses were used for BCR comparisons. Stepwise backwards elimination proportional hazard regression analysis was used to explore the significance of SRF in predicting BCR in the context of other clinical pathological variables. Area under the curve (AUC) values were generated by simulating repeated random sub-samples.RESULTS: Analysis of the immunohistochemical staining of benign versus cancer cores showed higher expression of nuclear SRF protein expression in cancer cores compared with benign for all the three TMAs analysed (P < 0.001, n = 615). Kaplan-Meier curves of the three TMAs combined showed that patients with higher SRF nuclear expression had a shorter time to BCR compared with patients with lower SRF expression (P < 0.001, n = 215). Together with pathological T stage T3, SRF was identified as a predictor of BCR using stepwise backwards elimination proportional hazard regression analysis (P = 0.0521). Moreover ROC curves and AUC values showed that SRF was better than T stage in predicting BCR at year 3 and 5 following radical prostatectomy, the combination of SRF and T stage had a higher AUC value than the two taken separately.CONCLUSIONS: SRF assessment by IHC following RP could be useful in guiding clinicians to better identify patients for appropriate follow-up and timely treatment
    corecore