51 research outputs found

    Kinome-Wide Functional Genomics Screen Reveals a Novel Mechanism of TNFα-Induced Nuclear Accumulation of the HIF-1α Transcription Factor in Cancer Cells

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) and its most important subunit, HIF-1α, plays a central role in tumor progression by regulating genes involved in cancer cell survival, proliferation and metastasis. HIF-1α activity is associated with nuclear accumulation of the transcription factor and regulated by several mechanisms including modulation of protein stability and degradation. Among recent advances are the discoveries that inflammation-induced cytokines and growth factors affect protein accumulation of HIF-1α under normoxia conditions. TNFα, a major pro-inflammatory cytokine that promotes tumorigenesis is known as a stimulator of HIF-1α activity. To improve our understanding of TNFα-mediated regulation of HIF-1α nuclear accumulation we screened a kinase-specific siRNA library using a cell imaging–based HIF-1α-eGFP chimera reporter assay. Interestingly, this systematic analysis determined that depletion of kinases involved in conventional TNFα signaling (IKK/NFκB and JNK pathways) has no detrimental effect on HIF-1α accumulation. On the other hand, depletion of PRKAR2B, ADCK2, TRPM7, and TRIB2 significantly decreases the effect of TNFα on HIF-1α stability in osteosarcoma and prostate cancer cell lines. These newly discovered regulators conveyed their activity through a non-conventional RELB-depended NFκB signaling pathway and regulation of superoxide activity. Taken together our data allow us to conclude that TNFα uses a distinct and complex signaling mechanism to induce accumulation of HIF-1α in cancer cells. In summary, our results illuminate a novel mechanism through which cancer initiation and progression may be promoted by inflammatory cytokines, highlighting new potential avenues for fighting this disease

    Kinase Activity Profiling of Pneumococcal Pneumonia

    Get PDF
    Background: Pneumonia represents a major health burden. Previous work demonstrated that although the induction of inflammation is important for adequate host defense against pneumonia, an inability to regulate the host's inflammatory response within the lung later during infection can be detrimental. Intracellular signaling pathways commonly rely on activation of kinases, and kinases play an essential role in the regulation of the inflammatory response of immune cells. Methodology/Principal Findings: Pneumonia was induced in mice via intranasal instillation of Streptococcus (S.) pneumoniae. Kinomics peptide arrays, exhibiting 1024 specific consensus sequences for protein kinases, were used to produce a systems biology analysis of cellular kinase activity during the course of pneumonia. Several differences in kinase activity revealed by the arrays were validated in lung homogenates of individual mice using western blot. We identified cascades of activated kinases showing that chemotoxic stress and a T helper 1 response were induced during the course of pneumococcal pneumonia. In addition, our data point to a reduction in WNT activity in lungs of S. pneumoniae infected mice. Moreover, this study demonstrated a reduction in overall CDK activity implying alterations in cell cycle biology. Conclusions/Significance: This s

    Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans

    Get PDF
    Infection by human cytomegalovirus (HCMV) leads to NKG2C-driven expansion of adaptive natural killer (NK) cells, contributing to host defense. However, approximately 4% of all humans carry a homozygous deletion of the gene that encodes NKG2C (NKG2C−/−\textit{NKG2C}^{-/-}). Assessment of NK cell repertoires in 60 NKG2C−/−\textit{NKG2C}^{-/-} donors revealed a broad range of NK cell populations displaying characteristic footprints of adaptive NK cells, including a terminally differentiated phenotype, functional reprogramming, and epigenetic remodeling of the interferon (IFN)-γ\gamma promoter. We found that both NKG2C−^{-} and NKG2C+^{+} adaptive NK cells expressed high levels of CD2, which synergistically enhanced ERK and S6RP phosphorylation following CD16 ligation. Notably, CD2 co-stimulation was critical for the ability of adaptive NK cells to respond to antibody-coated target cells. These results reveal an unexpected redundancy in the human NK cell response to HCMV and suggest that CD2 provides "signal 2" in antibody-driven adaptive NK cell responses.This work was supported by grants from the Swedish Research Council, the Swedish Children’s Cancer Society, the Swedish Cancer Society, the Tobias Foundation, the Swedish Foundation for Strategic Research, the Karolinska Institutet, the Wenner-Gren Foundation, the Norwegian Cancer Society, the Norwegian Research Council, the South-Eastern Norway Regional Health Authority, and the KG Jebsen Center for Cancer Immunotherapy. J.T. and J.A.T. are supported by the MRC and the Welcome Trust with partial funding from the National Institute for Health Research Cambridge Biomedical Research Centre. V.B. is supported by the French National Research Agency (ANR) (grant no. NKIR-ANR-13-PDOC- 0025-01)

    Remodeling of secretory lysosomes during education tunes functional potential in NK cells

    Get PDF
    Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education

    Retinoid-Induced Expression and Activity of an Immediate Early Tumor Suppressor Gene in Vascular Smooth Muscle Cells

    Get PDF
    Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA) regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall

    Compartmentalization of Cyclic AMP Signalling Compartmentalized cAMP signalling is important in the regulation of Ca 2+ cycling in the heart

    No full text
    Abstract Co-ordinated myocyte handling of calcium is essential for efficient excitation-contraction coupling in the heart. The calcium cycling activity can be modulated by adrenergic stimulation and subsequent phosphorylation. Important functional consequences of phosphorylation include a greater influx of calcium through the voltage-dependent L-type Ca 2+ channel and a greater release of calcium from SR (sarcoplasmic reticulum) through the ryanodine R2 receptor. Furthermore, a more efficient reuptake through SERCA2 (sarcoplasmic/endoplasmic-reticulum Ca 2+ -ATPase 2) is a result of phosphorylation of its regulatory protein phospholamban. Compartmentalized signalling is important in this signalling cascade, and A-kinase-anchoring proteins play a central role by providing a high level of specificity. Contraction and relaxation of heart muscle cells are regulated by calcium (Ca 2+ ) cycling between the cytoplasm (sarcoplasm) and SR (sarcoplasmic reticulum

    Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets

    No full text
    Background; Dissecting the signaling events that contribute to platelet activation will increase our understanding of platelet function and aid in the development of new antiplatelet agents. However, high-throughput methodology for the quantitative analysis of platelet signaling events is still lacking. Objective; To develop a high-throughput assay for the analysis of platelet signaling events in whole blood. Methods and Results; We developed a fluorescent barcoding protocol to facilitate multiplexing and enable large-scale signaling profiling in platelets in whole blood. The methodology allowed simultaneous staining and acquisition of 24–96 samples in a single analysis tube with a standard flow cytometer. This approach significantly reduced experimental numbers, data acquisition time, and antibody consumption, while providing automated statistically rich quantitative data on signaling events. Using vasodilator-stimulated phosphoprotein (VASP), an established marker of platelet inhibition and antiplatelet drug therapy, we demonstrated that the assay could detect subtle changes in phosphoVASP-Ser157/239 in response to cAMP-elevating agents of varying potency and known modulators of the cAMP signaling cascade. The assay could be used with washed platelets or whole blood, analyzed immediately or frozen, without any significant change in assay performance. To demonstrate the usefulness of the assay as a drug discovery platform, we examined a prostaglandin screening library. Our screen of 70 prostaglandin derivatives revealed three previously uncharacterized lipids that stimulated phosphorylation of VASP-Ser157. Follow-up analyses demonstrated that these agents elevated intraplatelet cAMP and inhibited collagen-induced platelet aggregation. Conclusions;This novel method enables rapid, large-scale quantitative signalling profiling and compound screening in human platelets present in whole blood
    • …
    corecore