87 research outputs found
Magnetic "Molecular Oligomers" based on decametallic supertetrahedra: A giant Mn49 cuboctahedron and its Mn25Na4 fragment
et al.Two nanosized Mn and MnNa clusters based on analogues of the high-spin (S=22) [Mn Mn (μ-O)] supertetrahedral core are reported. Mn and MnNa complexes consist of eight and four decametallic supertetrahedral subunits, respectively, display high virtual symmetry (O), and are unique examples of clusters based on a large number of tightly linked high nuclearity magnetic units. The complexes also have large spin ground-state values (Mn: S=61/2; MnNa: S=51/2) with the Mn cluster displaying single-molecule magnet (SMM) behavior and being the second largest reported homometallic SMM.This work was supported by the Cyprus Research Promotion Foundation grant ANABAVMISH/PAGIO/0308/12 which is co-funded by the Republic of Cyprus and the European Regional Development Fund, the US National Science Foundation (Grant DMR-1213030 to G.C.), and the Spanish MINECO (Project FEDER-MAT2012-38318-C03-01).Peer Reviewe
Synthesis and Structural Characterization of a Metal Cluster and a Coordination Polymer Based on the [Mn6(μ4-O)2]10+ Unit
A new 1-D coordination polymer {[Mn6O2(O2CMe)10(H2O)4]·2.5H2O}∞ (1·2.5H2O)∞ and the cluster [Mn6O2(O2(O2CPh)10 (py)2(MeCN)(H2O)]·2MeCN (2·2MeCN) are reported. Both compounds were synthesized by room temperature reactions of [Mn3(μ3-O)(O2CR)6(L)2(L′)] (R = Me, L = L′ = py, (1·2.5H2O)∞; R = Ph, L = py, L′ = H2O, 2·2MeCN) in the presence of 3-hydroxymethylpyridine (3hmpH) in acetonitrile. The structures of these complexes are based on hexanuclear mixed-valent manganese carboxylate clusters containing the [Mn4IIMn2III(μ4-O)2]10+ structural core. (1·2.5H2O)∞ consists of zigzag chain polymers constructed from [Mn6O2(O2CMe)10(H2O)4] repeating units linked through acetate ligands, whereas 2·2MeCN comprises a discrete Mn6-benzoate cluster
Synthesis and Characterization of a Linear [Mn3(O2CMe)4(py)8]2+ Complex
Two new compounds that consist of the linear trinuclear manganese(II) cation [Mn3(O2CMe)4(py)8]2+ cocrystallizing with different counteranions (I3−, [1]; ClO4−, [2]) are reported. Complex 1 was prepared from the reaction of [Mn(O2CMe)2] · 4H2O with I2 in MeCO2H/py, whereas complex 2 was isolated from the reaction of [Mn3O(O2CMe)6(py)3] · py with [Mn(ClO4)2] · 6H2O in MeCN/py. The crystal structures of both compounds were determined by single crystal X-ray crystallography. Magnetic susceptibility studies that were performed in microcrystalline powder of 1 in the 2–300 K range revealed the presence of antiferromagnetic exchange interactions that resulted in an S = 5/2 ground spin state
Mononuclear and Dinuclear Manganese(II) Complexes from the Use of Methyl(2-pyridyl)ketone Oxime
The reactions of methyl(2-pyridyl)ketone oxime, (py)C(Me)NOH, with manganese(II) sulfate monohydrate have been investigated. The reaction between equimolar quantities of MnSO4 · H2O and (py)C(Me)NOH in H2O lead to the dinuclear complex [Mn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH, 1 · (py)C(Me)NOH, while employment of NaOMe as base affords the compound [Mn(HCO2)2{(py)C(Me)NOH}2] (2). The structures of both compounds have been determined by single crystal X-ray diffraction. In both complexes, the organic ligand chelates through its nitrogen atoms. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes
From 1D coordination polymers to Metal Organic Frameworks by the use of 2-pyridyl oximes.
The synthesis and characterization of coordination polymers and metal-organic frameworks (MOFs) has attracted a significant interest over the last decades due to their fascinating physical properties, as well as their use in a wide range of technological, environmental, and biomedical applications. The initial use of 2-pyridyl oximic ligands such as pyridine-2 amidoxime (H2pyaox) and 2-methyl pyridyl ketoxime (Hmpko) in combination with 1,2,4,5-benzene tetracarboxylic acid (pyromellitic acid), H4pma, provided access to nine new compounds whose structures and properties are discussed in detail. Among them, [Zn2(pma)(H2pyaox)2(H2O)2]n (3) and [Cu4(OH)2(pma)(mpko)2]n (9) are the first MOFs based on a 2-pyridyl oxime with 9 possessing a novel 3,4,5,8-c net topology. [Zn2(pma)(H2pyaox)2]n (2), [Cu2(pma)(H2pyaox)2(DMF)2]n (6), and [Cu2(pma)(Hmpko)2(DMF)2]n (8) join a small family of coordination polymers containing an oximic ligand. 9 exhibits selectivity for FeIII ions adsorption, as was demonstrated by a variety of techniques including UV-vis, EDX, and magnetism. DC magnetic susceptibility studies in 9 revealed the presence of strong antiferromagnetic interactions between the metal centers, which lead to a diamagnetic ground state; it was also found that the magnetic properties of 9 are affected by the amount of the encapsulated Fe3+ ions, which is a very desirable property for the development of magnetism-based sensors
Bismuth(III) bromide-thioamide complexes: synthesis, characterization and cytotoxic properties
New bismuth(III) bromine compounds of the heterocyclic thioamides were prepared and structurally characterized. The reaction of heterocyclic thioamides with bismuth(III) bromide resulted in the formation of the {[BiBr2(mu(2)-Br)(MMI)(2)](2)center dot CH3COCH3 center dot H2O} (1), {[BiBr2(MBZIM)(4)]center dot Br center dot 2H(2)O} (2), {[BiBr2(mu(2)-Br)(tHPMT)(2)](2)center dot CH3CN} (3), {[BiBr2(mu(2)-Br)(PYT)(2)](2)center dot CH3CN} (4) and {[BiBr2(mu(2)-Br)(MBZT)(2)](2) 2CH(3)OH} (5) complexes (MMI: 2-mercapto-1-methylimidazole, MBZIM: 2-mercaptobenzimidazole, tHPMT: 2-mercapto-3,4,5,6-tetrahydro-pyrimidine, PYT: 2-mercaptopyridine and MBZT: 2-mercaptobenzothiazole). The complexes 1-5 were characterized by melting point (m.p.), elemental analysis (c.a.), molar conductivity, Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman), nuclear magnetic resonance (H-1 and (CNMR)-C-13) spectroscopy, UV-Vis spectroscopy and thermogravimetric-differential thermal analysis (TG-DTA). The molecular structures of 1-5 were determined by single-crystal X-ray diffraction. Complex 2 is a first ionic monomuclear octahedral bismuth(III) bromide, while the complexes 1,3-5 are the first examples of dinuclear bismuth(III) bromide derivatives. Complexes 1-5 were evaluated in terms of their in vitro cytotoxic activity against human adenocarcinoma breast (MCF-7) and cervix (HeLa) cells. The toxicity on normal human fetal lung fibroblast cells (MRC-5) was also evaluated. Moreover, the complexes 1-5 and free heterocyclic thioamide ligands were studied upon the catalytic peroxidation of the linoleic acid by the enzyme lipoxygenase (LOX).Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [114Z457](a) I.I.O. and M.C. acknowledge the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 114Z457). (b) CNB and SKH would like to thank the Unit of Bioactivity Testing of Xenobiotics of the University of Ioannina for providing access to their facilities. (c) The International Graduate Program in 'Biological Inorganic Chemistry', which operates at the University of Ioannina within the collaboration of the Departments of Chemistry of the Universities of Ioannina, Athens, Thessaloniki, Patras, Crete and the Department of Chemistry of the University of Cyprus (http://bic.chem.uoi.gr/BIC-En/index-en.html), is acknowledged for the stimulating discussion forum
A novel family of triangular CoII2LnIII and CoII2YIII clusters by the employment of Di-2-Pyridyl ketone
The synthesis, structural characterization and magnetic study of novel CoII/4f and CoII/YIII clusters are described. In particular, the initial employment of di-2-pyridyl ketone, (py)2CO, in mixed metal Co/4f chemistry, provided access to four triangular clusters, [CoII2MIII{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2 (M = Gd, 1; Dy, 2; Tb, 3; Y, 4), where (py)2C(OEt)(O)− is the monoanion of the hemiketal form of (py)2CO. Clusters 1-4 are the first reported Co/4f (1-3) and Co/Y (4) species bearing (py)2CO or its derivatives, despite the fact that over 200 metal clusters bearing this ligand have been reported so far. Variable-temperature, solid-state dc and ac magnetic susceptibility studies were carried out on 1-4 and revealed the presence of weak ferromagnetic exchange interactions between the metal ions (JCo-Co = +1.3 and +0.40 cm−1 in 1 and 4, respectively; JCo-Gd = +0.09 cm−1 in 1). The ac susceptibility studies on 2 revealed nonzero, weak out-of-phase (χ''M) signals below ~5 K
Giant Heterometallic [Mn36Ni4]0/2− and [Mn32Co8] “Loops-of-Loops-and-Supertetrahedra” Molecular Aggregates
We report the synthesis, crystal structures and magnetic properties of the giant heterometallic [Mn36Ni4]2−/0 (compounds 1, 2)/[Mn32Co8] (compound 3) “loops-of-loops-and-supertetrahedra” molecular aggregates and of a [Mn2Ni6]2+ compound (cation of 4) that is structurally related with the cation co-crystallizing with the anion of 1. In particular, after the initial preparation and characterization of compound [Mn2Ni6(μ4-O)2(μ3-OH)3(μ3-Cl)3(O2CCH3)6(py)8]2+[Mn36Ni4(μ4-O)8(μ3-O)4(μ3-Cl)8Cl4(O2CCH3)26(pd)24(py)4]2− (1) we targeted the isolation of (i) both the cationic and the anionic aggregates of 1 in a discrete form and (ii) the Mn/Co analog of [Mn36Ni4]2− aggregate. Our synthetic efforts toward these directions afforded the discrete [Mn36Ni4] “loops-of-loops-and-supertetrahedra” aggregate [Mn36Ni4(μ4-O)8(μ3-O)4(μ3-Cl)8Cl2(O2CCH3)26(pd)24(py)4(H2O)2] (2), the heterometallic Mn/Co analog [Mn32Co8(μ4-O)8(μ3-O)4(μ3-Cl)8Cl2(μ2-OCH2CH3)2(O2CCH3)28(pd)22(py)6] (3) and the discrete [Mn2Ni6]2+ cation [Mn2Ni6(μ4-O)2(μ3-OH)4(μ3-Cl)2(O2CCH3)6(py)8](ClO4)(OH) (4). The structure of 1 consists of a mixed valence [Mn28IIIMn8IINi4II]2− molecular aggregate that contains two Mn8IIINi2II loops separated by two Mn6IIIMn4II supertetrahedral units and a [Mn2IIINi6II]2+ cation based on two [MnIIINi3II(μ4-O)(μ3-OH)1.5(μ3-Cl)1.5]4+ cubane sub-units connected through both mono- and tri-atomic bridges provided by the μ4-O2− and carboxylate anions. The structures of 2–4 are related to those of the compounds co-crystallized in 1 exhibiting however some differences that shall be discussed in detail in the manuscript. Magnetism studies revealed the presence of dominant ferromagnetic interactions in 1–3 that lead to large ground state spin (ST) values for the “loops-of-loops-and-supertetrahedra” aggregates and antiferromagnetic exchange interactions in 4 that lead to a low (and possibly zero) ST value. In particular, dc and ac magnetic susceptibility studies revealed that the discrete [Mn36Ni4] aggregate exhibits a large ST value ~ 26 but is not a new SMM. The ac magnetic susceptibility studies of the [Mn32Co8] analog revealed an extremely weak beginning of an out-of-phase tail indicating the presence of a very small relaxation barrier assignable to the anisotropic Co2+ions and a resulting out-of-phase ac signal whose peak is at very low T
A hexameric [MnIII18Na6] wheel based on [MnIII3O]7+ sub-units
International audienc
- …