7 research outputs found

    Th17 cells differentiated with mycelial membranes of Candida albicans prevent oral candidiasis

    Get PDF
    Candida albicans is a human commensal that causes opportunistic infections. Th17 cells provide resistance against mucosal infection with C. albicans; however, the T cell antigens remain little known. Our final goal is to find effective T cell antigens of C. albicans that are responsible for immunotherapy against candidiasis. Here, we prepared fractions including cytosol, membrane and cell wall from yeast and mycelial cells. Proteins derived from a membrane fraction of mycelial cells effectively induced differentiation of CD4+ T cells into IL-17A-producing Th17 cells. To confirm the immunological response in vivo of proteins from mycelial membrane, we performed adoptive transfer experiments using ex vivo stimulated CD4+ T cells from IL-17A-GFP reporter mice. Mycelial membrane-differentiated CD4+ Th17 cells adoptively transferred intravenously prevented oral candidiasis by oral infection of C. albicans, compared with control anti-CD3-stimulated CD4+ T cells. This was confirmed by the clinical score and the number of neutrophils on the infected tissues. These data suggest that effective T cell antigens against candidiasis could be present in the membrane protein fraction of mycelial cells. The design of novel vaccination strategies against candidiasis will be our next step.福岡歯科大学2017年

    Identification of a Novel Alternatively Spliced Form of Inflammatory Regulator SWAP-70-Like Adapter of T Cells

    No full text
    Activation of naive CD4+ T cells results in the development of several distinct subsets of effector Th cells, including Th2 cells that play a pivotal role in allergic inflammation and helminthic infections. SWAP-70-like adapter of T cells (SLAT), also known as Def6 or IBP, is a guanine nucleotide exchange factor for small GTPases, which regulates CD4+ T cell inflammatory responses by controlling Ca2+/NFAT signaling. In this study, we have identified a novel alternatively spliced isoform of SLAT, named SLAT2, which lacks the region encoded by exons 2–7 of the Def6 gene. SLAT2 was selectively expressed in differentiated Th2 cells after the second round of in vitro stimulation, but not in differentiated Th1, Th17, or regulatory T (Treg) cells. Functional assays revealed that SLAT2 shared with SLAT the ability to enhance T cell receptor- (TCR-) mediated activation of NFAT and production of IL-4 but was unable to enhance TCR-induced adhesion to ICAM-1. Ectopic expression of SLAT2 or SLAT in Jurkat T cells resulted in the expression of distinct forms of filopodia, namely, short versus long ones, respectively. These results demonstrate that modulating either SLAT2 or SLAT protein expression could play critical roles in cytokine production and actin reorganization during inflammatory immune responses

    Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: red-flag symptom clusters and treatment algorithm

    No full text
    corecore