34 research outputs found

    Stability of SARS-CoV-2 spike antigens against mutations

    Get PDF
    Modern health care needs preventive vaccines and therapeutic treatments with stability against pathogen mutations to cope with current and future viral infections. At the beginning of the COVID-19 pandemic, our analytic and predictive tool identified a set of eight short SARS-CoV-2 S-spike protein epitopes that had the potential to persistently avoid mutation. Here a combination of genetic, Systems Biology and protein structure analyses confirm the stability of our identified epitopes against viral mutations. Remarkably, this research spans the whole period of the pandemic, during which 93.9% of the eight peptides remained invariable in the globally predominant 43 circulating variants, including Omicron. Likewise, the selected epitopes are conserved in 97% of all 1,514 known SARS-CoV-2 lineages. Finally, experimental analyses performed with these short peptides showed their specific immunoreactivity. This work opens a new perspective on the design of next-generation vaccines and antibody therapies that will remain reliable against future pathogen mutations.Dr. Lozano-Perez acknowledges the European Commission ERDF/FEDER Operational Program 'Murcia' CCI No. 2007ES161PO001 (Project No. 14-20/20). Miodrag Grbic acknowledges support from the NSERC Discovery grant (Canada). This work also has received funding from the Department of Education of the Basque Government via the Consolidated Research Group MATH MODE (IT1456-22). Besides, Ildefonso Martinez De la Fuente and Iker Malaina were supported by the UPV/EHU and Basque Center of Applied Mathematics, grant US21/27N

    Islet xenograft destruction in the hu-PBL-severe combined immunodeficient (SCID) mouse necessitates anti-CD3 preactivation of human immune cells

    No full text
    Introduction of the hu-PBL-SCID mouse model has yielded a potentially useful tool for research in transplantation. The aim of this study was to define the conditions necessary for a reconstituted human immune system to destroy in a consistent manner rat islet xenografts in the alloxan-diabetic hu-PBL-SCID mouse. We examined different time points of hu-PBL reconstitution, different transplantation sites of the islets and several hu-PBL reconstitution protocols. Major differences in graft destruction were observed between the different hu-PBL reconstitution protocols, irrespective of timing of hu-PBL reconstitution or site of transplantation. Although preactivation of hu-PBL did not improve the level of hu-PBL chimerism, histological and immunohistochemical analysis of the grafts revealed a severe human lymphocytic infiltration and β cell destruction only in the grafts of mice receiving preactivated hu-PBL. This β cell injury resulted in impaired glucose tolerance, with in some animals recurrence of hyperglycaemia, and decreased insulin and C-peptide levels after glucose stimulation. Therefore, we conclude that activation of hu-PBL prior to transfer is essential in achieving xenograft infiltration and destruction in hu-PBL-SCID mice. The need for immune manipulation suggests that interactions between hu-PBL and xenografts in this model may be hampered by incompatibilities in cross-species adhesion and/or activation signals

    Deficient IFN-gamma Expression in Umbilical Cord Blood (UCB) T Cells Can Be Rescued by IFN-gamma-Mediated Increase in NFATc2 Expression

    No full text
    Regulation of nuclear factor of activated T cells-c2 (NFATc2) gene expression is not clearly defined. We previously reported reduced NFATc2 protein expression in cord blood T lymphocytes. Here we show that NFATc2 expression in T cells is dependent in part on the presence of IFN-gamma during primary stimulation, as blocking of IFN-gamma blunted NFATc2 protein and mRNA upregulation. Conversely, addition of exogenous IFN-gamma during stimulation resulted in increased expression of NFATc2 in cord blood T lymphocytes. This correlated with rescue of deficient IFN-gamma expression by cord blood T cells. Rescue of IFN-gamma expression in cord blood T cells was dependent on the presence of antigen-presenting cells, as addition of IFN-gamma during stimulation of purified cord blood T cells did not result in an increase of IFN-gamma expression, and depletion of monocytes ablated the rescue of IFN-gamma expression. Our results point to impaired function in the antigen-presenting cell population of cord blood, playing a role in the hyporesponsiveness of T cells

    Recipient-Specific Tolerance after HLA-Mismatched Umbilical Cord Blood Stem Cell Transplantation

    No full text
    Background: Lower incidence and severity of acute graft versus host disease (GVHD) has been observed in leukemia patients receiving HLA-mismatched umbilical cord (UCB) transplants. However, despite the increased use of UCB in stem cell transplantation, the mechanisms underlying these favorable outcomes are not well delineated.Methods: We analyzed antigen specific lymphocyte responses after transplant to determine whether the decreased allogeneic responsiveness of UCB lymphocytes is attributable to pan-unresponsiveness, lymphocyte repressive or recipient-specific tolerance.Results: Circulating lymphocytes collected early (3 months) after UCB transplant demonstrate a less naive phenotype compared with that in the infused graft. Additionally, after transplant, circulating peripheral blood UCB-derived lymphocytes produced normal levels of interferon-[gamma] and proliferated normally when stimulated with mitogen or third party alloantigen. In contrast, when stimulated with recipient antigen, circulating lymphocytes emerging posttransplant did not proliferate nor produce interferon-[gamma]. Moreover, analysis of interleukin-4 production revealed a Th2 response to recipient antigens. These data indicate early induction of immune tolerance of naive UCB graft lymphocytes with skewing of transplant recipient-specific immune response towards Th2 cytokine profile.Conclusions: UCB graft lymphocyte immune naivety and observed early tolerance induction may contribute to the observed favorable GVHD incidence, despite infusion of HLA mismatch grafts in the unrelated allogeneic setting

    Impaired Plasmacytoid Dendritic Cell (PDC)-NK Cell Activity in Viremic Human Immunodeficiency Virus Infection Attributable to Impairments in both PDC and NK Cell Function▿

    No full text
    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-γ) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-γ and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-α dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-γ-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-α stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-α receptor expression, though IFN-α receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-α-induced NK cell activity and not to altered IFN-α receptor, NKP30, NKP44, NKP46, or NKG2D expression
    corecore