440 research outputs found
On a differential inclusion related to the Born-Infeld equations
We study a partial differential relation that arises in the context of the
Born-Infeld equations (an extension of the Maxwell's equations) by using
Gromov's method of convex integration in the setting of divergence free fields
Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples
This paper provides an overview of interpolation of Banach and Hilbert
spaces, with a focus on establishing when equivalence of norms is in fact
equality of norms in the key results of the theory. (In brief, our conclusion
for the Hilbert space case is that, with the right normalisations, all the key
results hold with equality of norms.) In the final section we apply the Hilbert
space results to the Sobolev spaces and
, for and an open . We exhibit examples in one and two dimensions of sets
for which these scales of Sobolev spaces are not interpolation scales. In the
cases when they are interpolation scales (in particular, if is
Lipschitz) we exhibit examples that show that, in general, the interpolation
norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio
of these two norms can be arbitrarily large
Homogenization of Maxwell's equations in periodic composites
We consider the problem of homogenizing the Maxwell equations for periodic
composites. The analysis is based on Bloch-Floquet theory. We calculate
explicitly the reflection coefficient for a half-space, and derive and
implement a computationally-efficient continued-fraction expansion for the
effective permittivity. Our results are illustrated by numerical computations
for the case of two-dimensional systems. The homogenization theory of this
paper is designed to predict various physically-measurable quantities rather
than to simply approximate certain coefficients in a PDE.Comment: Significantly expanded compared to v1. Accepted to Phys.Rev.E. Some
color figures in this preprint may be easier to read because here we utilize
solid color lines, which are indistinguishable in black-and-white printin
A C0 interior penalty discontinuous Galerkin method for fourthâorder total variation flow I: Derivation of the method and numerical results
We consider the numerical solution of a fourthâorder total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourthâorder parabolic equation, we perform an implicit discretization in time and a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper
The nonlinear diffusion limit for generalized Carleman models: the initial-boundary value problem
Consider the initial-boundary value problem for the 2-speed Carleman model of
the Boltzmann equation of the kinetic theory of gases set in some bounded
interval with boundary conditions prescribing the density of particles entering
the interval. Under the usual parabolic scaling, a nonlinear diffusion limit is
established for this problem. In fact, the techniques presented here allow
treating generalizations of the Carleman system where the collision frequency
is proportional to some power of the macroscopic density, with exponent in
[-1,1]
Bounds on strong field magneto-transport in three-dimensional composites
This paper deals with bounds satisfied by the effective non-symmetric
conductivity of three-dimensional composites in the presence of a strong
magnetic field. On the one hand, it is shown that for general composites the
antisymmetric part of the effective conductivity cannot be bounded solely in
terms of the antisymmetric part of the local conductivity, contrary to the
columnar case. So, a suitable rank-two laminate the conductivity of which has a
bounded antisymmetric part together with a high-contrast symmetric part, may
generate an arbitrarily large antisymmetric part of the effective conductivity.
On the other hand, bounds are provided which show that the antisymmetric part
of the effective conductivity must go to zero if the upper bound on the
antisymmetric part of the local conductivity goes to zero, and the symmetric
part of the local conductivity remains bounded below and above. Elementary
bounds on the effective moduli are derived assuming the local conductivity and
effective conductivity have transverse isotropy in the plane orthogonal to the
magnetic field. New Hashin-Shtrikman type bounds for two-phase
three-dimensional composites with a non-symmetric conductivity are provided
under geometric isotropy of the microstructure. The derivation of the bounds is
based on a particular variational principle symmetrizing the problem, and the
use of Y-tensors involving the averages of the fields in each phase.Comment: 21 page
Convergence of a semi-discretization scheme for the Hamilton--Jacobi equation: a new approach with the adjoint method
We consider a numerical scheme for the one dimensional time dependent Hamilton--Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L. C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(sqrt{h}) convergence rate in terms of the L^infty norm and O(h) in terms of the L^1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper
Anomalous diffusion for a class of systems with two conserved quantities
We introduce a class of one dimensional deterministic models of energy-volume
conserving interfaces. Numerical simulations show that these dynamics are
genuinely super-diffusive. We then modify the dynamics by adding a conservative
stochastic noise so that it becomes ergodic. System of conservation laws are
derived as hydrodynamic limits of the modified dynamics. Numerical evidence
shows these models are still super-diffusive. This is proven rigorously for
harmonic potentials
Application de la théorie des indices de sélection à des caractÚres répétés. Exemple de la sélection sur la prolificité chez le porc
International audienc
- âŠ