16 research outputs found

    GEIA: Working Towards Better Emissions Information

    No full text
    International audienceAccurate, evaluated, timely, and accessible emissions information is critical for understanding and making predictions about the atmosphere. We present recent progress of the Global Emissions InitiAtive (GEIA, http://www.geiacenter.org/), a community-driven joint activity of IGAC, iLEAPS, and AIMES. For the past quarter century, GEIA has served as a forum for the exchange of expertise and information on anthropogenic and natural emissions of trace gases and aerosols. GEIA supports a worldwide network of emissions data developers and users, providing a solid scientific foundation for atmospheric chemistry research. GEIA serves as a bridge between the environmental science, regulatory, assessment, policy, and operational communities. GEIA’s core activities include 1) facilitating analysis that improves the scientific basis for emissions data, 2) enhancing access to emissions information, and 3) strengthening linkages within the international emissions community. We highlight GEIA’s current work distributing emissions data, organizing the development of new emissions datasets, facilitating regional emissions studies, and initiating analyses aimed at improving emissions information. GEIA welcomes new partnerships that advance emissions knowledge for the future

    Feasibility study for asphalt rubber pavements in Norway. ‘Rubber Road’ feasibility study.

    No full text
    RubberRoad proposes to use rubber from used tires in the production of asphalt for road and bicycle ways. This recycling approach has not gained much attention in Norway despite its apparent advantages, such as noise reduction, increased durability, safer shock impact, and reduced climate and environmental impacts. The Life Cycle Analysis carried out during this project feasibility study has demonstrated a series of environmental benefits in the use of rubber in asphalt production. It has also helped identify relevant knowledge gaps related to the use phase of the rubberized asphalt and its impact to noise, air and micro-plastic pollution. Better understanding of these effects would probably result in even larger environmental benefits of rubberized asphalt with respect to standard asphalt production. However, while the tire recycling industry is generally positive to the disposal of used tires in asphalt production, additional incentives need to be put in place for the Norwegian asphalt producers to consider actively contributing to this development

    Kartlegging av forurensningssituasjonen i norske byer og tettsteder med vurdering av soneinndeling og av eksisterende målenettverk

    No full text
    Denne rapporten vurderer luftforurensningssituasjonen i norske byer og tettsteder i de siste 5 årene. Den presenterer vurderingskriteriene for en mulig revisjon av det norske soneinndeling og evaluerer eksisterende målenettverket i forhold til soneinndeling. Vurderingen tar utgangspunkt i kravene fra direktivene 2008/50/EF om «luftkvalitet og renere luft i Europa» og 2004/107/EF om «arsen, kadmium, kvikksølv, nikkel og polysykliske aromatiske hydrokarboner i luften», samt forurensningsforskriften, kapittel 7. Rapporten presenterer en del anbefalinger for videre oppdatering av målenettverket for lokal luftkvalitet i norske byer og tettsteder

    CALIOP near-real-time backscatter products compared to EARLINET data

    Get PDF
    The expedited near-real-time Level 1.5 Cloud–Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type

    Kvalitetskrav knyttet til luftkvalitetsberegninger i norsk regelverk. Status og anbefalinger til videre prosess.

    No full text
    Målet er å belyse hvilke kvalitetskrav som bør stilles til luftkvalitetsberegninger, kart og data til ulike bruksformål slik disse er formulert i norsk regelverk, herunder Forurensningsloven, Folkehelseloven, Plan- og bygningsloven, Retningslinje for behandling av luftkvalitet i arealplanlegging (T1520) m.fl. Miljødirektoratet ønsker å sikre god, enhetlig og sammenlignbar kvalitet og praksis på utredninger av luftkvalitet og har bedt om anbefalinger i form av denne rapporten. For å få et best mulig grunnlag for å vurdere behovet for veiledning og kvalitetskriterier for ulike anvendelser, har det vært fokus på å innhente informasjon og innspill fra ulike brukergrupper og fagmiljøer. Det er gjennomført en spørreundersøkelse og det er arrangert flere møter og åpne kommentarrunder med ulike brukergrupper og fagmiljøer. Siden eventuelle kvalitetskrav vil kunne ha betydning for konkurranse i markedet og påvirke ressursbruken både hos private aktører og myndigheter, har brukermedvirkning vært et viktig element i dette arbeidet etter ønske fra oppdragsgiver

    Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5

    No full text
    While the burden caused by air pollution in urban areas is well documented, the origin of this pollution and therefore the responsibility of the urban areas in generating this pollution are still a subject of scientific discussion. Source apportionment represents a useful technique to quantify the city's responsibility, but the approaches and applications are not harmonized and therefore not comparable, resulting in confusing and sometimes contradicting interpretations. In this work, we analyse how different source apportionment approaches apply to the urban scale and how their building elements and parameters are defined and set. We discuss in particular the options available in terms of indicator, receptor, source, and methodology. We show that different choices for these options lead to very large differences in terms of outcome. For the 150 large EU cities selected in our study, different choices made for the indicator, the receptor, and the source each lead to an average difference of a factor of 2 in terms of city contribution. We also show that temporal- and spatial-averaging processes applied to the air quality indicator, especially when diverging source apportionments are aggregated into a single number, lead to the favouring of strategies that target background sources while occulting actions that would be efficient in the city centre. We stress that methodological choices and assumptions most often lead to a systematic and important underestimation of the city's responsibility, with important implications. Indeed, if cities are seen as a minor actor, plans will target the background as a priority at the expense of potentially effective local actions

    Evaluation of traffic control measures in Oslo region and its effect on current air quality policies in Norway

    Get PDF
    Urban air pollution is a challenge in several European cities. For most Norwegian cities, the major challenge is the reduction of the NO2 annual mean concentration in order to comply with the limit value in the European Directive 2008/50/EC, but also too many high NO2 hourly values occur during strong inversions in cold winter periods. In Oslo, the main contributor to NO2 concentration levels is diesel exhaust and hence the proposed measures in this study are targeting road traffic. An extensive array of individual and grouped measures were constructed and we studied the change in traffic and NO2 concentrations by performing consecutive modelling studies which included traffic, emissions, and dispersion models. These measures were intended for permanent and temporary action. They included increases of the tolls that give access to the inner parts of the city, the establishment of low emission zones (LEZs), allowing for temporary free public transport, odd-even driving, defining priority lanes for low emission vehicles, and imposing higher parking fees. We concluded that the most efficient measures were the creation of LEZs and the increase of parking fees. We also explain how the findings from this work have helped to implement Norwegian air quality control policies.publishedVersio

    Application of the EMEP unified model to the UK with a horizontal resolution of 5 × 5 km<sup>2</sup>

    No full text
    The EMEP Unified model (Simpson et al. 2003; http://www.emep.int) is an Eulerian model that is driven by real-time meteorology. The model is applied over Europe for multiple years on a 50 × 50 km2 grid, with meteorological fields updated every 3 h. While comparisons with measurements have shown generally robust performance of the EMEP model on a European scale (e.g. Simpson et al. 2006), pollutants such as reactive nitrogen and sulphur have a high spatial variability in their emissions and a short life time. Therefore, the associated dry deposition also has a high spatial variability (Vieno 2006; van Pul et al. 2008, this volume). This is very important when critical loads of nitrogen are calculated for specific ecosystems. For this reason a number of models have been developed for high resolution operation at a national scale. To address these issues for the UK, the EMEP Unified Model is being developed, using a nested approach. This model application, referred to as EMEP4UK, has been developed at a 5 × 5 km2 resolution covering the whole of the British Isles. By comparison with existing statistical models of atmospheric chemistry and transport over the UK (e.g. Singles et al. 1998; Lee et al. 2000; Metcalfe et al. 2001; Fournier et al. 2005; Vieno 2006; Dore et al. 2007), the EMEP4UK model therefore has the advantage of using real time meteorology, enabling the interactions between emissions, meteorology, concentrations and deposition to be addressed at a fine spatial scale.</p

    Evaluation of traffic control measures in Oslo region and its effect on current air quality policies in Norway

    No full text
    Urban air pollution is a challenge in several European cities. For most Norwegian cities, the major challenge is the reduction of the NO2 annual mean concentration in order to comply with the limit value in the European Directive 2008/50/EC, but also too many high NO2 hourly values occur during strong inversions in cold winter periods. In Oslo, the main contributor to NO2 concentration levels is diesel exhaust and hence the proposed measures in this study are targeting road traffic. An extensive array of individual and grouped measures were constructed and we studied the change in traffic and NO2 concentrations by performing consecutive modelling studies which included traffic, emissions, and dispersion models. These measures were intended for permanent and temporary action. They included increases of the tolls that give access to the inner parts of the city, the establishment of low emission zones (LEZs), allowing for temporary free public transport, odd-even driving, defining priority lanes for low emission vehicles, and imposing higher parking fees. We concluded that the most efficient measures were the creation of LEZs and the increase of parking fees. We also explain how the findings from this work have helped to implement Norwegian air quality control policies

    Evaluation of traffic control measures in Oslo region and its effect on current air quality policies in Norway

    Get PDF
    Urban air pollution is a challenge in several European cities. For most Norwegian cities, the major challenge is the reduction of the NO2 annual mean concentration in order to comply with the limit value in the European Directive 2008/50/EC, but also too many high NO2 hourly values occur during strong inversions in cold winter periods. In Oslo, the main contributor to NO2 concentration levels is diesel exhaust and hence the proposed measures in this study are targeting road traffic. An extensive array of individual and grouped measures were constructed and we studied the change in traffic and NO2 concentrations by performing consecutive modelling studies which included traffic, emissions, and dispersion models. These measures were intended for permanent and temporary action. They included increases of the tolls that give access to the inner parts of the city, the establishment of low emission zones (LEZs), allowing for temporary free public transport, odd-even driving, defining priority lanes for low emission vehicles, and imposing higher parking fees. We concluded that the most efficient measures were the creation of LEZs and the increase of parking fees. We also explain how the findings from this work have helped to implement Norwegian air quality control policies
    corecore