6 research outputs found

    Expanding the product portfolio of carbon dioxide and hydrogen-based gas fermentation with an evolved strain of Clostridium carboxidivorans

    No full text
    CO2:H2-based gas fermentation with acetogenic Clostridium species are at an early stage of development. This work exploited the Adaptive Laboratory Evolution technique to improve the growth of C. carboxidivorans P7 on CO2 and H2. An adapted strain with decreased growth lag phase and improved biomass production was obtained. Genomic analysis revealed a conserved frameshift mutation in the catalytic subunit of the hexameric hydrogenase gene. The resulted truncated protein variant, most likely lacking its functionality, suggests that other hydrogenases might be more efficient for H2-based growth of this strain. Furthermore, the adapted strain generated hexanol as primary fermentation product. For the first time, hexanol was produced directly from CO2:H2 blend, achieving the highest maximum productivity reported so far via gas fermentation. Traces of valerate, pentanol, eptanol and octanol were observed in the fermentation broth. The adapted strain shows promising to enrich the product spectrum targetable by future gas fermentation processes

    High-pressure fermentation of CO2 and H2 by a modified Acetobacterium woodii

    No full text
    Global warming due to the increased atmospheric carbon dioxide concentration is the driving force for developing strategies that exploit CO2 as raw material to produce interesting compounds for industry. According to this approach, Acetobacterium woodii was modified to convert CO2 and H2 into acetone. Gas fermentation was performed at high pressure to debottleneck the issue of the low availability of gaseous substrates in the liquid medium. This work aimed to investigate the catalytic performance of a modified A. woodii strain for acetone synthesis at 10 bar providing an H2-CO2 blend. First, tests were performed to assess the ability of the biocatalyst to survive heterotrophically at high pressure. Moreover, a reference test was set up in autotrophy at atmospheric pressure to confirm that it produced both acetate and acetone. Feeding the strain at 10 bar with the H2-CO2 mix resulted in growth inhibition and formic acid production. This outcome suggested a metabolism impairment due to bicarbonate build-up in the reactor at high CO2 partial pressure. Thus, bacteria were grown at atmospheric pressure in a medium with an augmented exogenous salt concentration. Results confirmed that formic acid production and growth inhibition could be due to HCO3–. Furthermore, the modified A. woodii grown at atmospheric pressure in a sterile medium pressurized before inoculation showed the same outcomes. Finally, tests at 10 bar lowering the CO2 partial pressure indicated that this gas was responsible for formic acid production but was not the only inhibitory factor for autotrophic cell growth at high pressure
    corecore