44 research outputs found

    Quantitative oculomotor assessment in hereditary ataxia: discriminatory power, correlation with severity measures, and recommended parameters for specific genotypes

    Get PDF
    Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes

    Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease

    Get PDF
    Objective To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). Methods Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing?based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ?2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. Results Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ?1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ?9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C?like progression (SARA points 2.5?5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. Conclusions RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. Classification of Evidence This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.FUNDING: Study Funding This work was supported via the European Union’s Horizon 2020 research and innovation program by the BMBF under the frame of the E-Rare-3 network PREPARE (01GM1607; to M. Synofzik,M.A., H.P., B.P.v.d.W.), by the DFG under the frame of EJP-RD network PROSPAX (No. 441409627; M. Synofzik, B.P.v.d.W., A.N.B.), and grant 779257 “Solve-RD” (toM. Synofzik, B.P.v.d.W.). B.P.v.d.W. receives additional research support from ZonMW, Hersenstichting, Gossweiler Foundation, uniQure, and Radboud University Medical Centre. T.B.H. was supported by the DFG (No 418081722). A.T. receives funding from the University of T¨ubingen, medical faculty, for the Clinician Scientist Program grant 439-0-0. A.C. thanks Medical Research Council, MR/T001712/1) and Fondazione CARIPLO (2019-1836) for grant support. L.S., T.K., B.P.v.d.W., and M. Synofzik are members of the European Reference Network for Rare Neurological Diseases, project 739510. A.N.B. is supported by the Suna and Inan Kirac Foundation and Koç University School of Medicine

    Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1-disease

    Get PDF
    OBJECTIVE: To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of RFC1-repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). METHODS: Multimodal RFC1 repeat screening (PCR, southern blot, whole-exome/genome (WES/WGS)-based approaches) combined with cross-sectional and longitudinal deep-phenotyping in (i) cross-European cohort A (70 families) with ≥2 features of CANVAS and/or ataxia-with-chronic-cough (ACC); and (ii) Turkish cohort B (105 families) with unselected late-onset ataxia. RESULTS: Prevalence of RFC1-disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1-disease was also identified in Western and Eastern Asians, and even by WES. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (=overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea and/or dystonia (11%). Ataxia progression was ∼1.3 SARA points/year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1]), but also included early falls, variable non-linear phases of MSA-C-like progression (SARA 2.5-5.5/year), and premature death. Treatment trials require 330 (1-year-trial) and 132 (2-year-trial) patients in total to detect 50% reduced progression. CONCLUSIONS: RFC1-disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes, yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1-treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RFC1-repeat expansions are associated with CANVAS and ACC

    Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented.</p> <p>Results</p> <p>The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect.</p> <p>Conclusions</p> <p>Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect.</p

    Visually guided adjustments of body posture in the roll plane

    Full text link
    Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject's roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p < 0.05) compared to upright in both paradigms, suggesting that, despite the earth-stationary retinal cues, extra-retinal input is integrated. Self-adjustments in the roll-tilted position were significantly (p < 0.01) more precise for earth-fixed cues than for body-fixed cues, underlining the importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body roll
    corecore