83 research outputs found

    Connections between microtubules and endoplasmic reticulum in mitotic spindle

    Get PDF

    Somatostatin receptors ligands in radionuclide diagnosis and therapy in oncology

    Get PDF

    Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction

    Get PDF
    Background Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. Results After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA(1) and GA(4) in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. Conclusions Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought

    Metadata matters: access to image data in the real world

    Get PDF
    Data sharing is important in the biological sciences to prevent duplication of effort, to promote scientific integrity, and to facilitate and disseminate scientific discovery. Sharing requires centralized repositories, and submission to and utility of these resources require common data formats. This is particularly challenging for multidimensional microscopy image data, which are acquired from a variety of platforms with a myriad of proprietary file formats (PFFs). In this paper, we describe an open standard format that we have developed for microscopy image data. We call on the community to use open image data standards and to insist that all imaging platforms support these file formats. This will build the foundation for an open image data repository

    Connections between microtubules and endoplasmic reticulum in mitotic spindle

    No full text
    Dividing endosperm cells of Haemanthus katherinae Bak. were treated with an 0.025 per cent aqueous solution of an oleander glycosides mixture which produces severe disturtaances in the mitotic spindle and high hypertrophy of the endoplasmic reticulum (ER) in the whole cells. There appear between the kinetochore microtubules (MTs) numerous elongated and narrow ER cisterns, particularly well visible when the number of kinetochore MTs is reduced. Both these structures (MTs and ER) are frequently connected by cross-bridges. The presumable role of these connections is discused
    • 

    corecore