1,182 research outputs found
Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph
In this paper, we address the problem of enumerating all induced subtrees in
an input k-degenerate graph, where an induced subtree is an acyclic and
connected induced subgraph. A graph G = (V, E) is a k-degenerate graph if for
any its induced subgraph has a vertex whose degree is less than or equal to k,
and many real-world graphs have small degeneracies, or very close to small
degeneracies. Although, the studies are on subgraphs enumeration, such as
trees, paths, and matchings, but the problem addresses the subgraph
enumeration, such as enumeration of subgraphs that are trees. Their induced
subgraph versions have not been studied well. One of few example is for
chordless paths and cycles. Our motivation is to reduce the time complexity
close to O(1) for each solution. This type of optimal algorithms are proposed
many subgraph classes such as trees, and spanning trees. Induced subtrees are
fundamental object thus it should be studied deeply and there possibly exist
some efficient algorithms. Our algorithm utilizes nice properties of
k-degeneracy to state an effective amortized analysis. As a result, the time
complexity is reduced to O(k) time per induced subtree. The problem is solved
in constant time for each in planar graphs, as a corollary
Amortized Rotation Cost in AVL Trees
An AVL tree is the original type of balanced binary search tree. An insertion
in an -node AVL tree takes at most two rotations, but a deletion in an
-node AVL tree can take . A natural question is whether
deletions can take many rotations not only in the worst case but in the
amortized case as well. A sequence of successive deletions in an -node
tree takes rotations, but what happens when insertions are intermixed
with deletions? Heaupler, Sen, and Tarjan conjectured that alternating
insertions and deletions in an -node AVL tree can cause each deletion to do
rotations, but they provided no construction to justify their
claim. We provide such a construction: we show that, for infinitely many ,
there is a set of {\it expensive} -node AVL trees with the property
that, given any tree in , deleting a certain leaf and then reinserting it
produces a tree in , with the deletion having done
rotations. One can do an arbitrary number of such expensive deletion-insertion
pairs. The difficulty in obtaining such a construction is that in general the
tree produced by an expensive deletion-insertion pair is not the original tree.
Indeed, if the trees in have even height , deletion-insertion
pairs are required to reproduce the original tree
New Variants of Pattern Matching with Constants and Variables
Given a text and a pattern over two types of symbols called constants and
variables, the parameterized pattern matching problem is to find all
occurrences of substrings of the text that the pattern matches by substituting
a variable in the text for each variable in the pattern, where the substitution
should be injective. The function matching problem is a variant of it that
lifts the injection constraint. In this paper, we discuss variants of those
problems, where one can substitute a constant or a variable for each variable
of the pattern. We give two kinds of algorithms for both problems, a
convolution-based method and an extended KMP-based method, and analyze their
complexity.Comment: 15 pages, 2 figure
A simple and optimal ancestry labeling scheme for trees
We present a ancestry labeling scheme for trees. The
problem was first presented by Kannan et al. [STOC 88'] along with a simple solution. Motivated by applications to XML files, the label size was
improved incrementally over the course of more than 20 years by a series of
papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an
asymptotically optimal labeling scheme using
non-trivial tree-decomposition techniques. By providing a framework
generalizing interval based labeling schemes, we obtain a simple, yet
asymptotically optimal solution to the problem. Furthermore, our labeling
scheme is attained by a small modification of the original solution.Comment: 12 pages, 1 figure. To appear at ICALP'1
Cache-Oblivious Persistence
Partial persistence is a general transformation that takes a data structure
and allows queries to be executed on any past state of the structure. The
cache-oblivious model is the leading model of a modern multi-level memory
hierarchy.We present the first general transformation for making
cache-oblivious model data structures partially persistent
Enumerating Cyclic Orientations of a Graph
Acyclic and cyclic orientations of an undirected graph have been widely
studied for their importance: an orientation is acyclic if it assigns a
direction to each edge so as to obtain a directed acyclic graph (DAG) with the
same vertex set; it is cyclic otherwise. As far as we know, only the
enumeration of acyclic orientations has been addressed in the literature. In
this paper, we pose the problem of efficiently enumerating all the
\emph{cyclic} orientations of an undirected connected graph with vertices
and edges, observing that it cannot be solved using algorithmic techniques
previously employed for enumerating acyclic orientations.We show that the
problem is of independent interest from both combinatorial and algorithmic
points of view, and that each cyclic orientation can be listed with
delay time. Space usage is with an additional setup cost
of time before the enumeration begins, or with a setup cost of
time
On the Number of Synchronizing Colorings of Digraphs
We deal with -out-regular directed multigraphs with loops (called simply
\emph{digraphs}). The edges of such a digraph can be colored by elements of
some fixed -element set in such a way that outgoing edges of every vertex
have different colors. Such a coloring corresponds naturally to an automaton.
The road coloring theorem states that every primitive digraph has a
synchronizing coloring.
In the present paper we study how many synchronizing colorings can exist for
a digraph with vertices. We performed an extensive experimental
investigation of digraphs with small number of vertices. This was done by using
our dedicated algorithm exhaustively enumerating all small digraphs. We also
present a series of digraphs whose fraction of synchronizing colorings is equal
to , for every and the number of vertices large enough.
On the basis of our results we state several conjectures and open problems.
In particular, we conjecture that is the smallest possible fraction of
synchronizing colorings, except for a single exceptional example on 6 vertices
for .Comment: CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1
Maximum Independent Sets in Subcubic Graphs: New Results
The maximum independent set problem is known to be NP-hard in the class of
subcubic graphs, i.e. graphs of vertex degree at most 3. We present a
polynomial-time solution in a subclass of subcubic graphs generalizing several
previously known results
On the (non-)existence of polynomial kernels for Pl-free edge modification problems
Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property P consists in deciding whether there exists a set of edges F of
size at most k such that the graph H = (V,E \vartriangle F) satisfies the
property P. In the P edge-completion problem, the set F of edges is constrained
to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no
constraint is imposed on F in the P edge-edition problem. A number of
optimization problems can be expressed in terms of graph modification problems
which have been extensively studied in the context of parameterized complexity.
When parameterized by the size k of the edge set F, it has been proved that if
P is an hereditary property characterized by a finite set of forbidden induced
subgraphs, then the three P edge-modification problems are FPT. It was then
natural to ask whether these problems also admit a polynomial size kernel.
Using recent lower bound techniques, Kratsch and Wahlstrom answered this
question negatively. However, the problem remains open on many natural graph
classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom
asked whether the result holds when the forbidden subgraphs are paths or cycles
and pointed out that the problem is already open in the case of P4-free graphs
(i.e. cographs). This paper provides positive and negative results in that line
of research. We prove that parameterized cograph edge modification problems
have cubic vertex kernels whereas polynomial kernels are unlikely to exist for
the Pl-free and Cl-free edge-deletion problems for large enough l
Complexity of Coloring Graphs without Paths and Cycles
Let and denote a path on vertices and a cycle on
vertices, respectively. In this paper we study the -coloring problem for
-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada,
have proved that 3-colorability of -free graphs has a finite forbidden
induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and
Vatshelle have shown that -colorability of -free graphs for
does not. These authors have also shown, aided by a computer search, that
4-colorability of -free graphs does have a finite forbidden induced
subgraph characterization. We prove that for any , the -colorability of
-free graphs has a finite forbidden induced subgraph
characterization. We provide the full lists of forbidden induced subgraphs for
and . As an application, we obtain certifying polynomial time
algorithms for 3-coloring and 4-coloring -free graphs. (Polynomial
time algorithms have been previously obtained by Golovach, Paulusma, and Song,
but those algorithms are not certifying); To complement these results we show
that in most other cases the -coloring problem for -free
graphs is NP-complete. Specifically, for we show that -coloring is
NP-complete for -free graphs when and ; for we show that -coloring is NP-complete for -free graphs
when , ; and additionally, for , we show that
-coloring is also NP-complete for -free graphs if and
. This is the first systematic study of the complexity of the
-coloring problem for -free graphs. We almost completely
classify the complexity for the cases when , and
identify the last three open cases
- …