15 research outputs found

    Cultural Neuroeconomics of Intertemporal Choice

    Get PDF
    According to theories of cultural neuroscience, Westerners and Easterners may have distinct styles of cognition (e.g., different allocation of attention). Previous research has shown that Westerners and Easterners tend to utilize analytical and holistic cognitive styles, respectively. On the other hand, little is known regarding the cultural differences in neuroeconomic behavior. For instance, economic decisions may be affected by cultural differences in neurocomputational processing underlying attention; however, this area of neuroeconomics has been largely understudied. In the present paper, we attempt to bridge this gap by considering the links between the theory of cultural neuroscience and neuroeconomic theory\ud of the role of attention in intertemporal choice. We predict that (i) Westerners are more impulsive and inconsistent in intertemporal choice in comparison to Easterners, and (ii) Westerners more steeply discount delayed monetary losses than Easterners. We examine these predictions by utilizing a novel temporal discounting model based on Tsallis' statistics (i.e. a q-exponential model). Our preliminary analysis of temporal discounting of gains and losses by Americans and Japanese confirmed the predictions from the cultural neuroeconomic theory. Future study directions, employing computational modeling via neural networks, are briefly outlined and discussed

    Universality of preference behaviors in online music-listener bipartite networks: A Big Data analysis

    Full text link
    We investigate the formation of musical preferences of millions of users of the NetEase Cloud Music (NCM), one of the largest online music platforms in China. We combine the methods from complex networks theory and information sciences within the context of Big Data analysis to unveil statistical patterns and community structures underlying the formation and evolution of musical preference behaviors. Our analyses address the decay patterns of music influence, users' sensitivity to music, age and gender differences, and their relationship to regional economic indicators. Employing community detection in user-music bipartite networks, we identified eight major cultural communities in the population of NCM users. Female users exhibited higher within-group variability in preference behavior than males, with a major transition occurring around the age of 25. Moreveor, the musical tastes and the preference diversity measures of women were also more strongly associated with economic factors. However, in spite of the highly variable popularity of music tracks and the identified cultural and demographic differences, we observed that the evolution of musical preferences over time followed a power-law-like decaying function, and that NCM listeners showed the highest sensitivity to music released in their adolescence, peaking at the age of 13. Our findings suggest the existence of universal properties in the formation of musical tastes but also their culture-specific relationship to demographic factors, with wide-ranging implications for community detection and recommendation system design in online music platforms.Comment: 23 pages, 15 Figures, 4 Table

    Evolution of ethnocentrism on undirected and directed Barabási-Albert networks

    Get PDF
    Using Monte Carlo simulations, we study the evolution of contigent cooperation and ethnocentrism in the one-move game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-\ud Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism toward similar others highly depends on the network topology and the associated heterogeneity of the studied population

    Cooperation in the snowdrift game on directed small-world networks under self-questioning and noisy conditions

    Full text link
    Cooperation in the evolutionary snowdrift game with a self-questioning updating mechanism is studied on annealed and quenched small-world networks with directed couplings. Around the payoff parameter value r=0.5r=0.5, we find a size-invariant symmetrical cooperation effect. While generally suppressing cooperation for r>0.5r>0.5 payoffs, rewired networks facilitated cooperative behavior for r<0.5r<0.5. Fair amounts of noise were found to break the observed symmetry and further weaken cooperation at relatively large values of rr. However, in the absence of noise, the self-questioning mechanism recovers symmetrical behavior and elevates altruism even under large-reward conditions. Our results suggest that an updating mechanism of this type is necessary to stabilize cooperation in a spatially structured environment which is otherwise detrimental to cooperative behavior, especially at high cost-to-benefit ratios. Additionally, we employ component and local stability analyses to better understand the nature of the manifested dynamics.Comment: 7 pages, 6 figures, 1 tabl

    Evolution of tag-mediated altruistic behavior in one-shot encounters on large-scale complex networks

    No full text
    An agent-based evolutionary model of tag-mediated altruism is studied on large-scale complex networks addressing multiplayer one-shot Prisoner's Dilemma-like games with four competing strategies. Contrary to standard theoretical predictions, but in line with recent empirical findings, we observed that altruistic acts in non-repeated interactions can emerge as a natural consequence of recognition of heritable phenotypic traits such as visual tags, which enable the discrimination between potentially beneficial and unproductive encounters. Moreover, we identified topological regimes in which cooperation always prevails at short times, but where unconditional cooperators are favored over conditional tag-based helpers, even though the latter initially have a slight reproductive advantage. After very long times, we found that all four strategies appeared about equally often, meaning that only one quarter of agents refused cooperation egoistically. However, our study suggests that intra-tag generosity can quickly evolve to dominate over other strategies in spatially structured environments that are otherwise detrimental to cooperative behavior. (C) 2012 Elsevier B.V. All rights reserved

    Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

    No full text
    Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks. (C) 2017 Elsevier B.V. All rights reserved

    Benefits of memory for the evolution of tag-based cooperation in structured populations

    No full text
    We study the effects of working memory capacity and network rewiring probability on the evolution of cooperation in the standard and modified versions of an agent-based model of tag-mediated altruism. In our evolutionary model, computational agents populate a large complex network, engage into multiplayer Prisoner's Dilemma-like interactions, and reproduce sexually. Agents carry discernible phenotypic traits subject to mutation, memorize their own experiences, and employ different strategies when interacting with different types of co-players. Choices made are selected from a pool of two conditional and two unconditional strategies, depending on the available memory contents and phenotypic similarity among interactors. For the dominating strategy in our standard model version, we found a strong dependence of cooperation on network structure and a weak one on memory, whereas in the modified version, the structural effect was weaker than that of memory. Most importantly, we found that the previously reported decline of cooperation in memory-based models, typically observed at a high memory capacity, is now prevented with the help of tags. This suggests that the evolutionary advantages of memory capacity limits may be far more complex than previously assumed. For much smaller systems, we observed a quasi-symmetric alternation of the two winning groups of strategists. This result provides an example of ingroup biased interactions that are characterized by bursts of intra-tag cooperation interspersed with periods of unconditional transient altruism. Such switches of strategies may represent a boosting mechanism necessary for the emergence and stability of global altruism in its early evolutionary stages

    Evolution of tag-based cooperation on Erdos-Renyi random graphs

    No full text
    Here, we study an agent-based model of the evolution of tag-mediated cooperation on Erdos-Renyi random graphs. In our model, agents with heritable phenotypic traits play pairwise Prisoner's Dilemma-like games and follow one of the four possible strategies: Ethnocentric, altruistic, egoistic and cosmopolitan. Ethnocentric and cosmopolitan strategies are conditional, i.e. their selection depends upon the shared phenotypic similarity among interacting agents. The remaining two strategies are always unconditional, meaning that egoists always defect while altruists always cooperate. Our simulations revealed that ethnocentrism can win in both early and later evolutionary stages on directed random graphs when reproduction of artificial agents was asexual; however, under the sexual mode of reproduction on a directed random graph, we found that altruists dominate initially for a rather short period of time, whereas ethnocentrics and egoists suppress other strategists and compete for dominance in the intermediate and later evolutionary stages. Among our results, we also find surprisingly regular oscillations which are not damped in the course of time even after half a million Monte Carlo steps. Unlike most previous studies, our findings highlight conditions under which ethnocentrism is less stable or suppressed by other competing strategies
    corecore