17 research outputs found

    High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity

    Get PDF
    Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity

    Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    Get PDF
    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug

    Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

    Get PDF
    To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p <2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups

    Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women

    No full text
    The measurement of circulating levels of brain-derived neurotrophic factor (BDNF) has been proposed to be a marker of disease and an indicator of recovery. Thus, knowing the temporal pattern and influence of potential circadian rhythms is important. Although several studies have measured BDNF at different times of day, no studies have done so while controlling for potential masking influences such as sleep and activity. Further, no previous study has examined circadian rhythms within individuals. We examined circadian rhythms in plasma BDNF while minimizing masking from behavioral and environmental factors using a 30-h constant routine (CR) protocol. In a sample of 39 healthy adults, we found significant circadian rhythms in 75% of women and 52% of men. The timing of the acrophase of the BDNF rhythm, however, was unrelated to clock time in women, while it was related to clock time in men. These results indicate that the use of single-sample measures of plasma BDNF as a marker of disease will be unreliable, especially in women. Repeated plasma BDNF samples over a 24-h period within individuals would be needed to reveal abnormalities related to disease states. </jats:p

    Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice

    No full text
    Cellular senescence is a state of irreversible cellular growth arrest accompanied by distinct changes in gene expression and the acquisition of a complex proinflammatory secretory profile termed the senescence-associated secretory phenotype (SASP). Senescent cells accumulate in aged tissues and contribute to age-related disease in mice. Increasing evidence that selective removal of senescent cells can ameliorate diseases of late life and extend lifespan in mice has given rise to the development of senolytics that target senescent cells as anti-aging therapeutics. To realize the full potential of senolytic medicine, robust biomarkers of senescence must be in place to monitor the in vivo appearance of senescent cells with age, as well as their removal by senolytic treatments. Here we investigate the dynamic changes in expression of the molecular hallmarks of senescence, including p16Ink4a, p21Cip1, and SASP factors in multiple tissues in mice during aging. We show that expression of these markers is highly variable in age- and tissue-specific manners. Nevertheless, Mmp12 represents a robust SASP factor that shows consistent age-dependent increases in expression across all tissues analyzed in this study and p16Ink4a expression is consistently increased with age in most tissues. Likewise, in humans CDKN2A (p16Ink4a) is one of the top genes exhibiting elevated expression in multiple tissues with age as revealed by data analysis of the Genotype-Tissue Expression (GTEx) project. These results support the targeting of p16Ink4a expressing-cells in senolytic treatments, while emphasizing the need to establish a panel of robust biomarkers of senescence in vivo in both mice and humans
    corecore