954 research outputs found

    Forensic Social Work: Practice and Vision

    Get PDF
    Forensic social work can bridge the gap between the criminal justice and mental health systems and serve clients who “fall between the cracks.” The authors describe theoretical and clinical issues, utilizing case examples and the literature to develop a conceptual paradigm for the role of social workers in this area

    Possible fabrication techniques and welding specifications for the external cylinder of the CMS coil

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.5 m and the free aperture is 6 m in diameter. This is achieved with a 4 layer and 5 module superconducting Al- stabilized coil energized at a nominal current of 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external cylinder. The calculated stress level in the cylinder at operating conditions is particularly severe. In this paper the different possible fabrication techniques are assessed and compared and a possible welding specification for this component is given. (9 refs)

    The CMS conductor

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the manufacture the bond quality between the Rutherford cable and the high purity aluminium as well as the quality of the EB welding are continuously controlled by a novel ultrasonic phased array system. The dimensions of the insert and the final conductor are measured by laser micrometer. (8 refs)
    corecore