66 research outputs found

    Hydrogels Of Chiral–Nematic Cellulose Nanocrystals And Nanochitin

    Get PDF
    The mechanical strength of hydrogels and aerogels produced from inorganic nano- and microparticles has been out of limits for those based on organic counterparts. Control over the nanoscale architecture of such materials is a possible answer to this challenge, which can even expand properties and functions, including mechano-optical activity. Here we show unprecedented levels of strength by controlling the assembly architecture of cellulose nanocrystals (CNC) and nanochitin (NCh), nanoscaled building blocks presenting anisometry and high intrinsic strength. High yield (\u3e85%) and low-energy deconstruction of never-dried residual marine biomass is proposed following partial deacetylation and microfluidization. This process results in NCh of ultrahigh axial size that produce highly entangled networks upon pH shift. Viscoelastic and strong hydrogels are formed by ice templating upon freezing and thawing with simultaneous cross-linking. Slow supercooling and ice nucleation at −20 °C make ice crystals grow slowly and exclude nanochitin and cross-linkers, becoming spatially confined at the interface. At a NCh concentration as low as 0.4 wt %, highly viscoelastic hydrogels are formed, at least an order of magnitude larger compared to those measured for the strongest chitin-derived hydrogels reported so far. The water absorption capacity of the hydrogels reaches a value of 466 g/g. Moreover, our results demonstrate that chiral-nematically ordered hydrogels can lead to aerogels with controlled meso- and microstructures that replicate the liquid crystalline phase transitions of the hydrogels. The obtained architectures are feasible by systematically varying the long-range order of the aqueous CNC dispersions, from mostly isotropic to completely anisotropic. The resultant aerogels display strong coupling between the mesopore fraction and selective light reflection (iridescence) as a function of mechanical load. Specifically, we find that the mechanical performance associated with pore compression under load is greatly enhanced by chiral nematic ordering. These new limits in the mechanical properties of CNC- and NCh-based hydrogels and aerogels point to new structural considerations for the synthesis of porous constructs that exploit the inherent long-range order of such unique building blocks

    Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids

    Get PDF
    Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.Peer reviewe

    Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase

    Get PDF
    Publisher Copyright: © 2022 The Royal Society of ChemistryGas-phase acylation is an attractive and sustainable method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, i.e., which cellulose hydroxyls are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks - cellulose nanocrystals, pulps, dry-jet wet spun (regenerated cellulose) fibres and a nanocellulose-based aerogel. Using advanced analytics, we show that the gas-phase acetylation is highly regioselective for the C6-OH, a finding also supported by DFT-based transition-state modelling on a crystalloid surface. This contrasts with acid- and base-catalysed liquid-phase acetylation methods, highlighting that gas-phase chemistry is much more controllable, yet with similar kinetics, to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native (or regenerated) crystalline structure of the cellulose and the supramolecular morphology of even delicate cellulosic constructs (nanocellulose aerogel exhibiting chiral cholesteric liquid crystalline phases). Due to the soft nature of this chemistry and an ability to finely control the kinetics, yielding highly regioselective low degree of substitution products, we are convinced this method will facilitate the rapid adoption of precisely tailored and biodegradable cellulosic materials.Peer reviewe

    Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils

    No full text
    Mechanically fibrillated cellulose nanofibrils (CNFs) have attracted special attention as building blocks for the development of advanced materials and composites. A correlation exists between CNF morphology and the properties of the materials they form. However, this correlation is often evaluated indirectly by process-centered approaches or by accessing a single dimensionality of CNFs adsorbed on solid supports. High-resolution imaging is currently the best approach to describe the morphological features of nanocelluloses; nevertheless, adsorption effects need to be accounted for. For instance, possible deformations of the CNFs arising from capillary forces and interactions with the substrate need to be considered in the determination of their cross-sectional dimensions. By considering soft matter imaging and adsorption effects, we provide evidence of the deformation of CNFs upon casting and drying. We determine a substantial flattening associated with the affinity of CNFs with the substrate corresponding to a highly anisotropic cross-sectional geometry (ellipsoidal) in the dried state. Negative-contrast scanning electron microscopy is also introduced as a new method to assess the dimensions of the CNFs. The images obtained by the latter, a faster imaging method, were correlated with those from atomic force microscopy. The cross-sectional area of the CNF is reconstructed by cross-correlating the widths and heights obtained by the two techniques.Peer reviewe

    Recent progress of MXene as a cocatalyst in photocatalytic carbon dioxide reduction

    No full text
    Due to the excessive consumption of fossil fuel resources and the emission of a substantial quantity of CO2 into the environment, it is urgent to develop clean energy solutions. In order to reduce carbon emissions from the source, it is effective approach to convert CO2 into various renewable energy fuels. Inspired by the photosynthesis of green plant, CO2 is converted into clean fuel with the aid of catalysts. Regarding the separation and transfer of photogenerated charge carriers, and inadequate adsorption and activation of CO2 on the surface of catalysts, the current semiconductors utilized in photocatalysis have low efficiency. As a result, the current efficiency of photocatalysts is far from meeting the need for practical industrial demands. MXene materials, for example Ti3C2Tx (9980 S cm−1), have emerged as a promising candidate for CO2 reduction due to the significant number of active sites for functional groups, high conductivity and low defects, large surface areas, and outstanding visible light photoelectronic properties. This review provides a critical overview of the recent progress regarding MXene as a co-catalyst in photocatalytic CO2 reduction systems. We systemically explore the fundamental principles and reaction mechanisms associated with separating and transferring photogenerated charge carriers. Additionally, we investigate the basic properties of MXene as a co-catalyst in the context of CO2 reduction. Furthermore, this review also elucidates the impacts of the microstructure of photocatalysts on enhancing photocatalytic performance. Finally, the challenges and opportunities in using MXene as a co-catalyst for CO2 reduction have been presented to inspire further research in this field

    Drying stresses to tune strength and long-range order in nanocellulosic materials

    No full text
    | openaire: EC/H2020/788489/EU//BioELCell Funding Information: We acknowledge funding support by the European research council under the advanced grant 788489 BioElCell. BLT is the recipient of the Khalifa University of Science and Technology (KUST) Faculty Startup Project (Project code: 84741140-FSU-2022-021). Publisher Copyright: © 2023, The Author(s), under exclusive licence to Springer Nature B.V.A vast range of extraction processes, chemistries, and wet processing methods have been explored to improve the opto-mechanical properties of nanocellulosic materials. However, the stresses that arise during drying have been scarcely examined, in particular for their impact on performance. As with papermaking, drying is a critical step that significantly impacts the properties of nanocellulosic materials. The nano- and micro-scaled dimensions of nanocelluloses provide opportunities beyond those achievable in paper science, as the associated drying stresses are several orders of magnitude higher than those at the macroscale. Drying may be utilized towards the generation of assemblies with functional structures and enhanced properties. Herein, we highlight recent examples where such drying stresses are tethered to the structure of nanocellulosic materials. Using cellulose nanocrystals (CNCs), we investigate how the stresses that develop upon consolidation, and that remain thereafter (i.e., residual stresses), correlate with the mechanical performance of the obtained materials. We extend this analysis through results that highlight the impact of the “history” of drying of CNCs on the dynamics of the residual stresses. We also briefly discuss how inhomogeneous concentration gradients in drying suspensions may play an important role in the formation of superstructures across a range of nanocellulosic materials. Overall, by highlighting the importance of drying, we expect a more closely scrutinized science of drying to improve the properties of structures based on nanocellulose.Peer reviewe

    Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles

    No full text
    | openaire: EC/H2020/788489/EU//BioELCell Funding Information: The authors acknowledge funding support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 788489, “BioElCell”). The Canada Excellence Research Chair (CERC) program is also gratefully acknowledged as well as Canadian Foundation for Innovation (CFI). M.B. acknowledges financial support from the Austrian Science Fund (FWF) (J4356). Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.Colloids are suitable options to replace surfactants in the formation of multiphase systems while simultaneously achieving performance benefits. We introduce synergetic combination of colloids for the interfacial stabilization of complex fluids that can be converted into lightweight materials. The strong interactions between high aspect ratio and hydrophilic fibrillated cellulose (CNF) with low aspect ratio hydrophobic particles afford superstable Pickering foams. The foams were used as a scaffolding precursor of porous, solid materials. Compared to foams stabilized by the hydrophobic particles alone, the introduction of CNF significantly increased the foamability (by up to 350%) and foam lifetime. These effects are ascribed to the fibrillar network formed by CNF. The CNF solid fraction regulated the interparticle interactions in the wet foam, delaying or preventing drainage, coarsening, and bubble coalescence. Upon drying, such a complex fluid was transformed into lightweight and strong architectures, which displayed properties that depended on the surface energy of the CNF precursor. We show that CNF combined with hydrophobic particles universally forms superstable complex fluids that can be used as a processing route to synthesize strong composites and lightweight structures.Peer reviewe

    Expanding the upper limits of robustness of cellulose nanocrystal aerogels

    No full text
    | openaire: EC/H2020/788489/EU//BioELCellControl over the nanoscale architecture of a material enables fine tuning of its physical characteristics and associated functions. Depending on the performance demands, properties such as active surface area, density, optical response, transport characteristics and mechanical resilience can be tailored by nanostructuring. Herein, we exploit the liquid crystalline phase transitions in aqueous dispersions of highly anisometric, nanoscaled and high strength (EA > 150 GPa) cellulose nanocrystals (CNCs) to afford chiral-nematic ordered aerogels with controlled meso- and microstructures. Unprecedented levels of specific strength and toughness were achieved by controlling CNC assembly and derived architectures. We determined that the specific strength, and toughness, of CNC aerogels are improved by up to 137% and 60%, respectively, compared with the highest reported values for aerogels formed solely from cellulose nanofibrils or nanocrystals. Our results demonstrate that chiral-nematic ordered aerogels with controlled meso- and microstructures replicate the liquid crystalline phase transitions of CNCs in aqueous dispersions. The obtained architectures are evaluated systematically by varying the long-range order of the aqueous CNC dispersion from mostly isotropic to completely anisotropic. The resulting aerogels display a strong relationship between the mesopore fraction and selective light reflection (iridescence) as a function of mechanical load. Specifically, we find that the mechanical performance associated with pore compression under load is greatly enhanced by chiral-nematic ordering. The new limits in the mechanical properties of CNC-based aerogels point to new structural considerations for the synthesis of next generation porous constructs that exploit the inherent long-range order of such building blocks.Peer reviewe

    Controlling superstructure formation and macro-scale adhesion via confined evaporation of cellulose nanocrystals

    Get PDF
    | openaire: EC/H2020/788489/EU//BioELCell Funding Information: A.M.B-L. acknowledges the Margarita Salas (SOL-RPU-59) grant received and the Ph.D. Research Grant from the Ministerio de Educación, Cultura y Deporte (FPU16/03697). The collaboration with the University of Aalto has been possible thanks to the grants EST17/00875 and EST1/00577 from the Ministerio de Educación y Formación Profesional. L.G.G. acknowledges funding by the Aalto University School of Chemical Engineering doctoral programme. BLT acknowledges Khalifa University of Science and Technology (KUST) for the Faculty Startup Project (Project code: 84741140-FSU-2022-021). OJR acknowledges support by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 788489, “BioElCell”), the Canada Excellence Research Chair Program (CERC-2018-00006) and the Canada Foundation for Innovation (Project number 38623). Publisher Copyright: © 2022, The Author(s).The self-assembly of cellulose nanocrystals can tether their interfacial interactions and the associated properties of their constructs. For instance, assemblies of highly aligned cellulose nanocrystals (CNCs) bear improved mechanical strength, barrier properties, and piezoelectric response. In this study, the self-assembly of CNC superstructure was assessed under various confinement geometries, enabling optimization of the long-range order within the microstructures formed. The confinement involved the planar capillary (with a rectangular cross-section)formed between two glass substrates with silicone boundaries. The impact of temperature, width and thickness of the capillary plane on self-assembly of the micro-scaled lamellar structures was evaluated. Thinner capillaries and lower temperatures were found to considerably improve long-range order and increase the frequency of the periodic microstructures formed. The drying process was monitored by rheological analysis, which showed an initial fast drying followed by slow drying due to the hindered diffusion through lamellae. The adhesive properties of the formed superstructures were evaluated. The shear strength was shown to depend on the orientation of the superstructures and therefore of the CNCs. About 4 MPa adhesion strength was obtained when the lamellar superstructures were perpendicularly aligned with respect to the in-plane force applied, while ca. 3 MPa adhesion was obtained for parallel alignment. The experimental framework described herein enabled the evaluation of the impact of the dimensions of a drying meniscus on self-assembly of anisometric colloids while also linking cellulosic assemblies with their interfacial supramolecular interactions. This simple framework brings forward the possibility to correlate the behavior of nanometric objects with micro- and macro-scaled observations, e.g., macro-scaled mechanics of adhesion.Peer reviewe
    corecore