11 research outputs found

    Bollettino Sismico Italiano: Analisys of Early Aftershocks of the 2016 MW 6.0 Amatrice, MW 5.9 Visso and MW 6.5 Norcia earthquakes in Central Italy

    Get PDF
    The Amatrice-Visso-Norcia seismic sequence is the most important of the last 30 years in Italy. The seismic sequence started on 24 August, 2016 and still is ongoing in central Apennines. At the end of February 2017 more than 57,000 events were located, 80,000 events up to the end of September 2017 (Fig. 1). The mainshocks of the sequence occurred on 24 August 2016 (Mw 6.0 and Mw 5.4), 26 October 2016 (Mw 5.4 and Mw 5.9), 30 October 2016 (Mw 6.5), 18 January 2017 (four earthquakes Mw≥ 5.0). In this seismic sequence, all the waveforms recorded by temporary stations deployed by the SISMIKO emergency group (stations T12**; Moretti et al., 2016) where available in real- time at the surveillance room of INGV. Because of the high level of seismicity and the dense seismic network installed in the region, more than 150 events per day were located at the end of February 2017; still 60 events per day were located up to the end of August 2017.The Amatrice-Visso-Norcia is the most important seismic sequence since 2015, the time when the analysis procedures of the BSI group (Bollettino Sismico Italiano) were revised (Nardi et al., 2015). BSI is now available every four months on the web: bulletins contain revised earthquakes (location and magnitude) with ML≥ 1.5, quasi-real time revision of ML≥ 3.5 earthquakes and phase arrivals from waveforms recorded on seismic stations available from the European Integrated Data Archive (EIDA), (Mazza et al., 2012). These last procedures allow the integration of signals from temporary seismic stations (Moretti et al., 2014) installed by the emergency group SISMIKO (Moretti and Sismiko working group, 2016), even when they are not in real time transmission, if they are rapidly archived in EIDA, together with real time signals from the seismic stations of the permanent INGV network. The analysis strategy of the BSI group for the Amatrice -Visso - Norcia seismic sequence (AVN.s.s in the following) was to select the earthquakes located in the box with min/max latitude: 42.2/43.2 - and min/max longitude: 12.4/14.1 to prepare a special volume of BSI on the seismic sequence.PublishedTrieste, Italy1SR. TERREMOTI - Servizi e ricerca per la Societ

    RAPPORTO BOLLETTINO SISMICO ITALIANO sulla revisione dei giorni 24-26 agosto; 26-27 ottobre; 30 ottobre-1 novembre 2016

    Get PDF
    La sequenza sismica Amatrice-Visso-Norcia (AVN s.s. nel seguito) include il terremoto più forte avvenuto negli ultimi 30 anni in Italia ed è caratterizzata da molteplici eventi di magnitudo superiore a 5.0. La sequenza sismica è iniziata il 24 agosto 2016 con due terremoti di Mw 6.0 e Mw 5.4 nella zona di Amatrice (RI) ed è proseguita con altri due terremoti forti avvenuti il 26 ottobre, Mw 5.4 e Mw 5.9 nell’area compresa tra i comuni di Visso (MC), Castel S.Angelo sul Nera (MC), Norcia (PG) e Arquata del Tronto (AP). Il 30 ottobre si è verificato l’evento più forte della sequenza (Mw 6.5), con epicentro non lontano da Norcia, che ha colpito un vasto settore dell'Italia centrale, interessando ben quattro regioni (Umbria, Marche, Lazio e Abruzzo).Istituto Nazionale di Geofisica e VulcanologiaUnpublished1SR. TERREMOTI - Servizi e ricerca per la Societ

    Probabilistic People Tracking for Occlusion Handling

    No full text
    This work presents a novel people tracking approach, able to cope with frequent shape changes and large occlusions. In particular, the tracks are described by means of probabilistic masks and appearance models. Occlusions due to other tracks or due to background objects and false occlusions are discriminated. The tracking system is general enough to be applied with any motion segmentation module, it can track people interacting each other and it maintains the pixel assignment to track even with large occlusions. At the same time, the update model is very reactive, so as to cope with sudden body motion and silhouette's shape changes. Due to its robustness, it has been used in many experiments of people behavior control in indoor situations

    Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients

    Get PDF
    Background: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. Methods: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased 65 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. Results: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). Conclusions: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching

    Multidrug-Resistant Bacterial Colonization and Infections in Large Retrospective Cohort of Mechanically Ventilated COVID-19 Patients

    No full text
    Few data are available on incidence of multidrug-resistant organism (MDRO) colonization and infections in mechanically ventilated patients, particularly during the COVID-19 pandemic. We retrospectively evaluated all patients admitted to the COVID-19 intensive care unit (ICU) of Hub Hospital in Milan, Italy, during October 2020‒May 2021. Microbiologic surveillance was standardized with active screening at admission and weekly during ICU stay. Of 435 patients, 88 (20.2%) had MDROs isolated ≤48 h after admission. Of the remaining patients, MDRO colonization was diagnosed in 173 (51.2%), MDRO infections in 95 (28.1%), and non-MDRO infections in 212 (62.7%). Non-MDRO infections occurred earlier than MDRO infections (6 days vs. 10 days; p<0.001). Previous exposure to antimicrobial drugs within the ICU was higher in MDRO patients than in non-MDRO patients (116/197 [58.9%] vs. 18/140 [12.9%]; p<0.001). Our findings might serve as warnings for future respiratory viral pandemics and call for increased measures of antimicrobial stewardship and infection control

    Bulk ion heating with ICRF waves in tokamaks

    No full text
    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without 3He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with 3He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature Ti from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the 3He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Peer Reviewe
    corecore