33 research outputs found

    Sibling sex, but not androgens, shapes phenotypes in perinatal common marmosets (\u3ci\u3eCallithrix jacchus\u3c/i\u3e)

    Get PDF
    When offspring share a womb, interactions among fetuses can impart lasting impressions on phenotypic outcomes. Such intrauterine interactions often are mediated by sex steroids (estrogens and androgens) produced by the developing fetuses. In many mammals, intrauterine interactions between brothers and sisters lead to masculinization of females, which can induce fitness consequences. Many litter-bearing primates, though, seem to escape androgen-mediated litter effects, begging why? Here, we investigated how the sex composition (i.e., same- or mixed-sex) of litters influences perinatal outcomes in the common marmoset monkey (Callithrix jacchus), using a combination of physiological, morphological, and behavioural assays. We hypothesized that androgens from male fetuses would mediate developmental differences across litter types. We found that newborns (24–36 hours old) from same- and mixed-sex litters were indistinguishable by urinary androgen profiles, birth weights, morphometrics, and behaviour. However, monkeys born into same- and mixed-sex litters exhibited subtle morphological and neurobehavioral differences later in the perinatal period, independent of their androgen profiles. Our findings suggest that while androgens from male fetuses likely do not organize their siblings’ phenotypes, perinatal stimuli may initiate divergent developmental trajectories among siblings, which, in turn, promotes inter-individual variability within families

    Nonhuman Primate Induced Pluripotent Stem Cells in Regenerative Medicine

    Get PDF
    Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine

    Sibling sex, but not androgens, shapes phenotypes in perinatal common marmosets (\u3ci\u3eCallithrix jacchus\u3c/i\u3e)

    Get PDF
    When offspring share a womb, interactions among fetuses can impart lasting impressions on phenotypic outcomes. Such intrauterine interactions often are mediated by sex steroids (estrogens and androgens) produced by the developing fetuses. In many mammals, intrauterine interactions between brothers and sisters lead to masculinization of females, which can induce fitness consequences. Many litter-bearing primates, though, seem to escape androgen-mediated litter effects, begging why? Here, we investigated how the sex composition (i.e., same- or mixed-sex) of litters influences perinatal outcomes in the common marmoset monkey (Callithrix jacchus), using a combination of physiological, morphological, and behavioural assays. We hypothesized that androgens from male fetuses would mediate developmental differences across litter types. We found that newborns (24–36 hours old) from same- and mixed-sex litters were indistinguishable by urinary androgen profiles, birth weights, morphometrics, and behaviour. However, monkeys born into same- and mixed-sex litters exhibited subtle morphological and neurobehavioral differences later in the perinatal period, independent of their androgen profiles. Our findings suggest that while androgens from male fetuses likely do not organize their siblings’ phenotypes, perinatal stimuli may initiate divergent developmental trajectories among siblings, which, in turn, promotes inter-individual variability within families

    Diet, Digestion and Energy Intake in Captive Common Marmosets (Callithrix jacchus): Research and Management Implications

    Get PDF
    Common marmosets (Callithrix jacchus) are susceptible to intestinal inflammation which leads to chronic diarrhea, weight loss, and vitamin D deficiency. We examined food intake and digestion in three mixed-sex groups of adult marmosets maintained on three commercial base diets. Animals underwent two consecutive 4-day digestion trials. Body mass stayed constant. Feces and diet were assayed for Mn, fat, and gross energy (GE). Apparent digestibility of dry matter (ADDM) was calculated by the total collection method and from dietary and fecal Mn; the methods produced correlated results (r = 0.658, p \u3c 0.001). Apparent digestibility of energy (ADE) was calculated from ADDM and the GE of feces and diet; apparent digestibility of fat (ADfat) was calculated from ADDM and fecal fat. ADDM and ADE varied by diet (p \u3c 0.001). We found poor digesters on all three diets. The concentration of fecal fat was inversely related to ADE (r = −0.729, p \u3c 0.001). High fecal fat (\u3e10%) was associated with ADfat of zero, consistent with lipid malabsorption. Mean digestible energy intake (DEI) was equal to 1.5 the estimated metabolic rate, but varied widely between individuals. The diet with the fewest animals with high fecal fat had the highest mean DEI and most animals above 450 g, suggesting it may be obesogenic

    The development of a specific pathogen free (SPF) barrier colony of marmosets (Callithrix jacchus) for aging research

    Get PDF
    A specific pathogen free (SPF) barrier colony of breeding marmosets (Callithrix jacchus) was established at the Barshop Institute for Longevity and Aging Studies. Rodent and other animal models maintained as SPF barrier colonies have demonstrated improved health and lengthened lifespans enhancing the quality and repeatability of aging research. The marmosets were screened for two viruses and several bacterial pathogens prior to establishing the new SPF colony. Twelve founding animals successfully established a breeding colony with increased reproductive success, improved health parameters, and increased median lifespan when compared to a conventionally housed, open colony. The improved health and longevity of marmosets from the SPF barrier colony suggests that such management can be used to produce a unique resource for future studies of aging processes in a nonhuman primate model

    Maternal Weight Affects Placental DNA Methylation of Genes Involved in Metabolic Pathways in the Common Marmoset Monkey (Callithrix jacchus)

    Get PDF
    Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome-wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways

    Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities.

    Get PDF
    During its most recent outbreak across the Americas, Zika virus (ZIKV) was surprisingly shown to cause fetal loss and congenital malformations in acutely and chronically infected pregnant women. However, understanding the underlying pathogenesis of ZIKV congenital disease has been hampered by a lack of relevant in vivo experimental models. Here we present a candidate New World monkey model of ZIKV infection in pregnant marmosets that faithfully recapitulates human disease. ZIKV inoculation at the human-equivalent of early gestation caused an asymptomatic seroconversion, induction of type I/II interferon-associated genes and proinflammatory cytokines, and persistent viremia and viruria. Spontaneous pregnancy loss was observed 16-18 days post-infection, with extensive active placental viral replication and fetal neurocellular disorganization similar to that seen in humans. These findings underscore the key role of the placenta as a conduit for fetal infection, and demonstrate the utility of marmosets as a highly relevant model for studying congenital ZIKV disease and pregnancy loss

    The common marmoset genome provides insight into primate biology and evolution

    Get PDF
    We report the whole-genome sequence of the common marmoset (Callithrix jacchus). The 2.26-Gb genome of a female marmoset was assembled using Sanger read data (6×) and a whole-genome shotgun strategy. A first analysis has permitted comparison with the genomes of apes and Old World monkeys and the identification of specific features that might contribute to the unique biology of this diminutive primate, including genetic changes that may influence body size, frequent twinning and chimerism. We observed positive selection in growth hormone/insulin-like growth factor genes (growth pathways), respiratory complex I genes (metabolic pathways), and genes encoding immunobiological factors and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibited evidence of rapid sequence evolution. This genome sequence for a New World monkey enables increased power for comparative analyses among available primate genomes and facilitates biomedical research application. © 2014 Nature America, Inc
    corecore