1,800 research outputs found

    Body Mass Index and persistent pain in Australia: Patient characteristics and treatment outcomes

    Get PDF
    Body mass index (BMI) is calculated using a person’s weight by the square of their height (kg/m2), and is used to broadly categorise a person as underweight, normal weight, overweight or obese. This paper will explore the association of patient characteristics and outcomes by BMI category using data collected by the electronic Persistent Pain Outcomes Collaboration (ePPOC)

    Body Mass Index and persistent pain in New Zealand: Patient characteristics and treatment outcomes

    Get PDF
    Body mass index (BMI), calculated using a person’s weight by the square of their height (kg/m2), is used to broadly categorise weight as underweight, normal weight, overweight and obese. This paper will explore the association of patient characteristics and outcomes by BMI category using data collected by the electronic Persistent Pain Outcomes Collaboration (ePPOC)

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Single-block rockfall dynamics inferred from seismic signal analysis

    Get PDF
    International audienceSeismic monitoring of mass movements can significantly help to mitigate the associated hazards; however, the link between event dynamics and the seismic signals generated is not completely understood. To better understand these relationships, we conducted controlled releases of single blocks within a soft-rock (black marls) gully of the Rioux-Bourdoux torrent (French Alps). A total of 28 blocks, with masses ranging from 76 to 472 kg, were used for the experiment. An instrumentation combining video cameras and seismometers was deployed along the travelled path. The video cameras allow reconstructing the trajectories of the blocks and estimating their velocities at the time of the different impacts with the slope. These data are compared to the recorded seismic signals. As the distance between the falling block and the seismic sensors at the time of each impact is known, we were able to determine the associated seismic signal amplitude corrected for propagation and attenuation effects. We compared the velocity, the potential energy lost, the kinetic energy and the momentum of the block at each impact to the true amplitude and the radiated seismic energy. Our results suggest that the amplitude of the seismic signal is correlated to the momentum of the block at the impact. We also found relationships between the potential energy lost, the kinetic energy and the seismic energy radiated by the impacts. Thanks to these relationships, we were able to retrieve the mass and the velocity before impact of each block directly from the seismic signal. Despite high uncertainties, the values found are close to the true values of the masses and the velocities of the blocks. These relationships allow for gaining a better understanding of the physical processes that control the source of high-frequency seismic signals generated by rockfalls

    152 Hsp90 AND p130cas: NOVEL REGULATORY FACTORS OF MMP-13 EXPRESSION IN HUMAN OSTEOARTHRITIC CHONDROCYTES

    Get PDF

    Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MMP-13 and IGFBP-5 are important factors involved in osteoarthritis (OA). We investigated whether two highly predicted microRNAs (miRNAs), miR-140 and miR-27a, regulate these two genes in human OA chondrocytes.</p> <p>Methods</p> <p>Gene expression was determined by real-time PCR. The effect of each miRNA on IGFBP-5 and MMP-13 expression/production was evaluated by transiently transfecting their precursors (pre-miRNAs) and inhibitors (anti-miRNAs) into human OA chondrocytes. Modulation of IGFBP-5, miR-140 and miR-27a expression was determined upon treatment of OA chondrocytes with cytokines and growth factors.</p> <p>Results</p> <p>IGFBP-5 was expressed in human chondrocytes with its level significantly lower (p < 0.04) in OA. Five computational algorithms identified miR-140 and miR-27a as possible regulators of MMP-13 and IGFBP-5 expression. Data showed that both miRNAs were expressed in chondrocytes. There was a significant reduction (77%, p < 0.01) in miR-140 expression in OA compared to the normal chondrocytes, whereas miR-27a expression was only slightly decreased (23%). Transfection with pre-miR-140 significantly decreased (p = 0.0002) and with anti-miR-140 significantly increased (p = 0.05) IGFBP-5 expression at 24 hours, while pre-miR-27a did not affect either MMP-13 or IGFBP-5. Treatment with anti-miR-27a, but not with anti-miR-140, significantly increased the expression of both MMP-13 (p < 0.05) and IGFBP-5 (p < 0.01) after 72 hours of incubation. MMP-13 and IGFBP-5 protein production followed the same pattern as their expression profile. These data suggest that IGFBP-5 is a direct target of miR-140, whereas miR-27a down-regulates, likely indirectly, both MMP-13 and IGFBP-5.</p> <p>Conclusion</p> <p>This study is the first to show the regulation of these miRNAs in human OA chondrocytes. Their effect on two genes involved in OA pathophysiology adds another level of complexity to gene regulation, which could open up novel avenues in OA therapeutic strategies.</p

    Accurate strain measurements in highly strained Ge microbridges

    Full text link
    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure

    Maternal Weight Affects Placental DNA Methylation of Genes Involved in Metabolic Pathways in the Common Marmoset Monkey (Callithrix jacchus)

    Get PDF
    Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome-wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways

    Low-value clinical practices in injury care: a scoping review and expert consultation survey

    Get PDF
    BACKGROUND: Tests and treatments that are not supported by evidence and could expose patients to unnecessary harm, referred to here as low-value clinical practices, consume up to 30% of healthcare resources. Choosing Wisely and other organisations have published lists of clinical practices to be avoided. However, few apply to injury and most are based uniquely on expert consensus. We aimed to identify low-value clinical practices in acute injury care. METHODS: We conducted a scoping review targeting articles, reviews and guidelines that identified low-value clinical practices specific to injury populations. Thirty-six experts rated clinical practices on a 5-point Likert scale from clearly low-value to clearly beneficial. Clinical practices reported as low-value by at least one level I, II or III study and considered clearly or potentially low-value by at least 75% of experts were retained as candidates for low-value injury care. RESULTS: Of 50,695 citations, 815 studies were included and led to the identification of 150 clinical practices. Of these 63 were considered candidates for low-value injury care; 33 in the emergency room, 9 in trauma surgery, 15 in the intensive care unit and 5 in orthopaedics. We also identified 87 'grey zone' practices, which did not meet our criteria for low-value care. CONCLUSIONS: We identified 63 low-value clinical practices in acute injury care that are supported by empirical evidence and expert opinion. Conditional on future research, they represent potential targets for guidelines, overuse metrics and de-implementation interventions. We also identified 87 'grey zone' practices, which may be interesting targets for value-based decision-making. Our study represents an important step towards the de-implementation of low-value clinical practices in injury care. LEVEL OF EVIDENCE: III
    corecore