200 research outputs found

    Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs?

    Full text link
    We present measurements of the temperature and field dependencies of the magnetization M(T,H) of Nd(O0.89F0.11)FeAs at fields up to 33T, which show that superconductivity with the critical temperature Tc ~ 51K cannot coexist with antiferromagnetic ordering. Although M(T,H) at 55 < T < 140K exhibits a clear Curie-Weiss temperature dependence corresponding to the Neel temperature TN ~ 11-12K, the behavior of M(T,H) below Tc is only consistent with either paramagnetism of weakly interacting magnetic moments or a spin glass state. We suggest that the anomalous magnetic behavior of an unusual high-field paramagnetic superconductor Nd(O1-xFx)FeAs is mostly determined by the magnetic Nd ions.Comment: 4 pages, 4 figure

    Salivary gland ultrasonography: a highly specific tool for the early diagnosis of primary Sjögren's syndrome

    Get PDF
    INTRODUCTION:Recently, a great interest has arisen for salivary gland ultrasonography (SGUS) as a valuable tool for the assessment of major salivary gland involvement in primary Sjögren's syndrome (pSS. The aims of this study were to test the accuracy of SGUS for the early detection of pSSand to compare the diagnostic performance of SGUS with minor salivary gland biopsy (MSGB) and unstimulated salivary flow (USFR) in this context. METHOD:Patients with suspected pSS and symptoms duration of ≤5 years were consecutively enrolled in this study. The diagnosis of pSS was made according to the AECG criteria. SGUS was performed by two radiologists blinded to the diagnosis and a previously reported ultrasound scoring system (De Vita et al. 1992, cut-off ≥ 1) was used to grade the echostructure alterations of the salivary glands. Statistical analysis was performed using SPSS v16. RESULTS: This study included 50 pSS patients and 57 controls with no-SS sicca symptoms. The mean(SD) age of the pSS group was lower than non-SS group (47(13) vs 53(12)yrs, p = 0.006). No further differences between the two groups were observed. Patients with pSS showed a significantly higher SGUS score in comparison with controls (mean(SD) = 2.1(1.8) vs 0.0(0.4), p = 0.000). The SGUS cut-off ≥ 1 showed a sensitivity (SE) of 66 %, a specificity (SP) of 98 %, a positive predictive value (PPV) of 97 % and a negative predictive value (NPV) of 73 % for pSS diagnosis. The SGUS score correlated also with patients' MSGB/FS and USFR. CONCLUSIONS: This study confirmed the good performance of SGUS for the early non-invasive diagnosis of pSS. Further research in larger international cohort of patients is mandatory in order to assess the role of SGUS in the diagnostic algorithm of pSS

    High-field transport properties of a P-doped BaFe₂As₂ film on technical substrate

    Get PDF
    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis
    corecore