49 research outputs found

    Dependent coordinates in path integral measure factorization

    Full text link
    The transformation of the path integral measure under the reduction procedure in the dynamical systems with a symmetry is considered. The investigation is carried out in the case of the Wiener--type path integrals that are used for description of the diffusion on a smooth compact Riemannian manifold with the given free isometric action of the compact semisimple unimodular Lie group. The transformation of the path integral, which factorizes the path integral measure, is based on the application of the optimal nonlinear filtering equation from the stochastic theory. The integral relation between the kernels of the original and reduced semigroup are obtained.Comment: LaTeX2e, 28 page

    Successful surgical treatment of massive thrombosis of right parts of the heart in a woman-patient with oncological anamnesis

    Get PDF
    Successful surgical treatment of massive thrombosis of right parts of the heart in a woman-patient with oncological anamnesi

    Susceptibility to SARS-CoV-2 Virus Variants of Concern in Mouse Models

    Get PDF
    The aim of the research was to assess the susceptibility of mice of different lines to newly emerging variants of SARS-CoV-2.Materials and methods. The SARS-CoV-2 virus strains belonging to variants of concern (VOC) circulating in the territory of the Russian Federation were used in the study. Experiments involved three inbred mouse lines (BALB/c, CBA and C57Bl/6z) and CD1 outbred mice taken from the nursery of the SSC VB “Vector” of the Rospotrebnadzor. The infectious titer of coronavirus in tissue samples obtained from the laboratory animals was determined on a Vero E6 cell culture. The (Ct) threshold value in RT-PCR was considered an additional parameter for monitoring the viral load in the samples. The severity of lung tissue damage was assessed using histological preparations.Results and discussion. The susceptibility of various mouse lines to the genetic variant Beta of the SARS-CoV-2 virus has been investigated. During intranasal infection of the inbred and outbred mice with strains of VOC at a dose of 2·103 TCID50, the virus replicated in the lungs with maximum concentrations 72 hours after infection. The pathogenicity of genetic variants of the SARS-CoV-2 virus for BALB/c mice has been assessed, a 50 % infectious dose for intranasal infection (ID50) determined. Histological analysis showed COVID-19-specific lung tissue lesions in infected animals. Our study proves that BALB/c mice can be used as a model animal in screening studies when evaluating the effectiveness of therapeutic, vaccine preparations and studying the pathogenesis caused by VOC of the SARS-CoV-2 virus: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Omicron (B.1.1.529) and the like

    Pathogenicity of the SARS-CoV-2 Virus Variants of Concern for the Syrian Golden Hamster

    Get PDF
    The aim of the work was to study the pathogenicity of newly emerging variants of SARS-CoV-2 on the model of the Syrian golden hamster.Materials and methods. We used the strains of SARS-CoV-2 virus related to the VOC circulating in the territory of the Russian Federation. The experiments were carried out on outbreed Syrian hamsters obtained from the nursery of the SSC VB “Vector”. The infectious titer of coronavirus in tissue samples collected from infected laboratory animals was determined on a Vero E6 cell culture. The Ct in RT-PCR was considered an additional parameter for monitoring the viral load in the samples. The severity of lung tissue damage in Syrian hamsters with COVID-19 was assessed by histological preparations.Results and discussion. 50 % infecting doses in case of the intranasal infection have been determined, histological analysis of lung tissues performed. The pathogenicity of various variants of the SARS-CoV-2 virus for the Syrian hamster has been evaluated, differences in infecting doses and pathological changes in the lungs have been revealed. SARS-CoV-2 viruses belonging to Beta genetic variant have the highest virulence, while Alpha variant has the lowest one when comparing the studied strains by the ID50 value. The Delta and Omicron variants have a matched ability to cause specific damage to the tissues of the respiratory tract, while being inferior only to the Beta variant. It has been demonstrated that Syrian hamsters are an adequate model for assessing the pathogenicity of the SARS-CoV-2 virus variants of concern. Variants of SARS-CoV-2 virus during intranasal infection has shown different degree of pathogenicity in the Syrian hamster model

    Tratamentul chirurgical al Hiperplaziei Prostatice Benigne (HPB)

    Get PDF
    Summary The work is dedicated to comparative analysis of results of surgery treatment in patients with Benign Prostate Hyperplasia. The 543 patients with untreated prostate adenoma (exposed toadenoma removal - 415 patients, and transurethral resection - 128 patients). The analysis of the results demonstrated, that the rate and the character of intra- and post- operation complications depends considerably on rational choice of surgical intervenfion method (transvesical or transurethral) and quality of its realization. In present TUR remains the main method in the treatment of BPH, possessing many advantages and at the same time presenting many possibilities of simultaneous treatment of other diseases, which accompany BPH. Transvesical adenomaectomy remains a method of BPH treatment, having more narrow concrete indications: adenoma of great size and its combination with great or multiple urinary bladder stones

    Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties

    Get PDF
    The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals

    Immunogenic and Protective Features of the Recombinant Vaccinia Virus Strain Expressing Cassette of Genes of Marburg Virus Structural Proteins

    Get PDF
    The aim of the study was to create a highly immunogenic vaccine construct based on a recombinant variant of a replication-defective MVA strain of vaccinia virus, expressing virus-like particles that mimic natural infection with Marburg virus. Materials and methods. The recombinant virus was obtained through recombination between homologous viral DNA sequences and the insertion plasmid pDel2-GP-VP-Pat which carries transgenes of the structural proteins GP and VP40 of Marburg virus, flanked by fragments of MVA strain genome. Structure of the recombinant virus was confirmed in PCR and using sequencing, transgenes expression was analyzed by Western blotting, viruslike particles formation was recorded using electron microscopy. Evaluation of immunogenicity and protectivity was carried out using a guinea pig model. The antibody titer was determined in enzyme-linked immunosorbent assay. To assess T-cell response, the intracellular staining of cytokines was used, followed by analysis of samples on a flow cytometer. Results and discussion. On the basis of highly attenuated MVA strain of vaccinia virus a recombinant variant MVA-GP-VP40-MARV has been constructed, carrying a cassette of transgenes, GP and VP40, of Marburg virus in the region of deletion II of the genome. The expression of transgenes in MVA-permissive CER cells infected with recombinant MVA-GP-VP40-MARV strain and secretion of GP and VP40 proteins into culture medium have been demonstrated. Electron microscopy analysis has revealed the presence of Marburg virus-like particles in the culture medium of cells 12 hours after infection. Double vaccination of guinea pigs with MVA-GP-VP40-MARV strain at a dose of 108 PFU/animal induced the formation of antibodies to Marburg and vaccinia viruses, as well as 100 % protection against lethal Marburg virus infection (50 LD50). Using original TEpredict software, the structure of T-helper epitopes of GP protein has been predicted. Using the ICS method, the biological activity of these epitopes has been experimentally confirmed and it was shown that they provide the induction of a T-cell immune response as part of the MVA-GP-VP40-MARV vaccine construct

    Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish

    Full text link
    Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy. © 2020, The Author(s).The research was supported by the Russian Science Foundation (RSF) Grant 19‐15‐00053. KAD is supported by the President of Russia Graduate Fellowship, the Special Rector’s Productivity Fellowship for SPSU PhD Students, and the Russian Foundation for Basic Research (RFBR) grant 18‐34‐00996. ADP was supported by St. Petersburg University (project ID 51555422). The research team was supported by St. Petersburg State University state budgetary funds (project ID 51130521). AVK is the Chair of the International Zebrafish Neuroscience Research Consortium (ZNRC) and President of the International Stress and Behavior Society (ISBS, www.stress-and-behavior.com) that coordinated this collaborative multi-laboratory project. The consortium provided a collaborative idea exchange platform for this study. It is not considered as an affiliation, and did not fund the study. AVK is supported by the Southwest University Zebrafish Platform Construction Fund. TGA’s research is supported by the budgetary funding for basic research from the Scientific Research Institute of Physiology and Basic Medicine (AAAA-A16-116021010228-0, Novosibirsk, Russia). This study utilized equipment of the Core Facilities Centre “Centre for Molecular and Cell Technologies” of St. Petersburg State University. The funders had no role in the design, analyses, and interpretation of the submitted study, or decision to publish
    corecore