14 research outputs found

    Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion

    No full text
    Deciduous shrub growth has increased across the Arctic simultaneously with recent climate warming trends. The reduction in albedo associated with shrub-induced ‘greening’ of the tundra is predicted to cause significant positive feedbacks to regional warming. Enhanced soil fertility arising from climate change is expected to be the primary mechanism driving shrub responses, yet our overall understanding of the relative importance of soil nitrogen (N) and phosphorus (P) availability and the significance of other ecological drivers is constrained by experiments with varying treatments, sites, and durations. We investigated dwarf birch apical stem growth responses to a wide range of ecological factors (enhanced summer temperatures, deepened snow, caribou exclusion, factorial high level nitrogen and phosphorus additions, and low level nitrogen additions) after six years of experimental manipulations in birch hummock tundra. As expected, birch apical stem growth was more strongly enhanced by the substantial increases in nutrient supply than by our changes in any of the other ecological factors. The factorial additions revealed that P availability was at least as important as that of N, and our low N additions demonstrated that growth was unresponsive to moderate increases in soil nitrogen alone. Experimental warming increased apical stem growth 2.5-fold—considerably more than in past studies—probably due to the relatively strong effect of our greenhouses on soil temperature. Together, these results have important implications for our understanding of the biogeochemical functioning of mesic tundra ecosystems as well as predicting their vegetation responses to climate change

    Stoichiometric Homeostasis: A Test to Predict Tundra Vascular Plant Species and Community-level Responses to Climate Change

    No full text
    Climate change is having profound influences on arctic tundra plant composition, community dynamics, and ecosystem processes. Stoichiometric homeostasis (H), the degree to which a plant maintains its internal nutrient concentrations independent of nutrient variations in its environment, may be a useful approach to predict the impacts of these influences. In this case study, we used fertilization manipulation data to calculate homeostasis indices based on nitrogen (HN), phosphorus (HP), and nitrogen:phosphorus ratios (HN:P) of aboveground tissues for seven common tundra vascular species belonging to three growth forms. We then analyzed species H relationships with dominance, spatial stability, and responsiveness to various experimental manipulations. Each of the H indices was correlated amongst tissue-types within each species, and was generally highest in ericoid mycorrhizal host species and lowest in the ectomycorrhizal birch. Species HP and HN:P were consistently positively correlated with aboveground biomass within the controls and across all manipulations. Furthermore, these same species were spatially stable across experimentally warmed field plots. Stoichiometric homeostasis theory has been successful in predicting grassland community dynamics. This first test of its applicability across a variety of arctic plant growth forms highlights its considerable potential in predicting tundra plant community structure and responses to environmental change.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Data from: Enhancing plant diversity in a novel grassland using seed addition

    No full text
    1.Restoration of novel ecosystems to a historical benchmark may not always be possible or advisable. Novel ecosystems may be managed by targeting specific components and accepting the novelty of other ecosystem attributes. The feasibility of this component-wise management of novel ecosystems has rarely been tested. 2.In a novel grassland, where C3 grasses have replaced C4 grasses, nutrients have been elevated, and diversity has been lost due to a history of agricultural land use, we aimed to return diversity using seed addition, without altering the dominant grass matrix or nutrient status. Using direct seeding, with and without soil disturbance, we assessed the ability of 10 species of native forbs to establish. 3.Eight of the ten seeded species established in the first year. Soil disturbance increased establishment success by 50%, while high levels of exotic cover decreased it by 24%. Establishment was inversely related to total plant cover at sowing, with a 10% increase in initial plant cover decreasing establishment by 47%. 4.By the third year, six of the eight species persisted and five were flowering. Survival and reproduction in the third year was not associated with the soil disturbance treatment or plant cover. 5.Synthesis and applications. We show that native plant species can be re-established in grasslands where abiotic and biotic conditions are novel relative to their reference state. This suggests that the conservation value of novel ecosystems can be enhanced using simple restoration tools that target specific ecosystem components
    corecore