92 research outputs found
Remote Reactor Ranging via Antineutrino Oscillations
Antineutrinos from nuclear reactors can be used for monitoring in the mid- to
far-field as part of a non-proliferation toolkit. Antineutrinos are an
unshieldable signal and carry information about the reactor core and the
distance they travel.
Using gadolinium-doped water Cherenkov detectors for this purpose has been
previously proposed alongside rate-only analyses. As antineutrinos carry
information about their distance of travel in their energy spectrum, the
analyses can be extended to a spectral analysis to gain more knowledge about
the detected core.
Two complementary analyses are used to evaluate the distance between a
proposed gadolinium-doped water-based liquid scintillator detector and a
detected nuclear reactor. Example cases are shown for a detector in Boulby
Mine, near the Boulby Underground Laboratory in the UK, and six reactor sites
in the UK and France. The analyses both show strong potential to range
reactors, but are limited by the detector design.Comment: 12 pages, 9 figure
Immunofibrogenic Gene Expression Patterns in Tanzanian Children with Ocular Chlamydia trachomatis Infection, Active Trachoma and Scarring: Baseline Results of a 4-Year Longitudinal Study.
Trachoma, caused by Chlamydia trachomatis, is the world's leading infectious cause of blindness and remains a significant public health problem. Much of trachomatous disease pathology is thought to be caused indirectly by host cellular and immune responses, however the immune response during active trachoma and how this initiates progressive scarring is not clearly understood. Defining protective vs. pathogenic immune response to C. trachomatis is important for vaccine design and evaluation. This study reports the baseline results of a longitudinal cohort of Tanzanian children, who were monitored for 4 years in order to determine the immunofibrogenic and infectious correlates of progressive scarring trachoma. In this cohort baseline, 506 children aged 6-10 years were assessed for clinical signs, infection status and the expression of 91 genes of interest prior to mass azithromycin administration for trachoma control. C. trachomatis was detected using droplet digital PCR and gene expression was measured using quantitative real-time PCR. The prevalence of follicles, papillary inflammation and scarring were 33.6, 31.6, and 28.5%, respectively. C. trachomatis was detected in 78/506 (15.4%) individuals, 62/78 of whom also had follicles. C. trachomatis infection was associated with a strong upregulation of IFNG and IL22, the enrichment of Th1 and NK cell pathways and Th17 cell-associated cytokines. In individuals with inflammation in the absence of infection the IFNG/IL22 and NK cell response was reduced, however, pro-inflammatory, growth and matrix factors remained upregulated and mucins were downregulated. Our data suggest that, strong IFNG/IL22 responses, probably related to Th1 and NK cell involvement, is important for clearance of C. trachomatis and that the residual pro-inflammatory and pro-fibrotic phenotype that persists after infection might contribute to pathological scarring. Interestingly, females appear more susceptible to developing papillary inflammation and scarring than males, even at this young age, despite comparable levels of C. trachomatis infection. Females also had increased expression of a number of IFNγ pathway related genes relative to males, suggesting that overexpression of this pathway in response to infection might contribute to more severe scarring. Longitudinal investigation of these factors will reveal their relative contributions to protection from C. trachomatis infection and development of scarring complications
DjinniChip: evaluation of a novel molecular rapid diagnostic device for the detection of Chlamydia trachomatis in trachoma-endemic areas.
BACKGROUND: The clinical signs of active trachoma are often present in the absence of ocular Chlamydia trachomatis infection, particularly following mass drug administration. Treatment decisions following impact surveys and in post-control surveillance for communities are currently based on the prevalence of clinical signs, which may result in further unnecessary distribution of mass antibiotic treatment and the increased spread of macrolide resistance alleles in 'off-target' bacterial species. We therefore developed a simple, fast, low cost diagnostic assay (DjinniChip) for diagnosis of ocular C. trachomatis for use by trachoma control programmes. METHODS: The study was conducted in the UK, Germany and Tanzania. For clinical testing in Tanzania, specimens from a sample of 350 children between the ages of 7 to 15 years, which were part of a longitudinal cohort that began in February 2012 were selected. Two ocular swabs were taken from the right eye. The second swab was collected dry, kept cool in the field and archived at - 80 °C before sample lysis for DjinniChip detection and parallel nucleic acid purification and detection/quantification by qPCR assay. RESULTS: DjinniChip was able to reliably detect > 10 copies of C. trachomatis per test and correctly identified 7/10 Quality Control for Molecular Diagnostics C. trachomatis panel samples, failing to detect 3 positive samples with genome equivalent amounts ≤ 10 copies. DjinniChip performed well across a range of typical trachoma field conditions and when used by lay personnel using a series of mock samples. In the laboratory in Tanzania, using clinical samples the sensitivity and specificity of DjinniChip for C. trachomatis was 66% (95% CI 51-78) and 94.8 (95% CI 91-97%) with an overall accuracy of 90.1 (95% CI 86.4-93). CONCLUSIONS: DjinniChip performance is extremely promising, particularly its ability to detect low concentrations of C. trachomatis and its usability in field conditions. The DjinniChip requires further development to reduce inhibition and advance toward a closed system. DjinniChip results did not vary between local laboratory results and typical trachoma field settings, illustrating its potential for use in low-resource areas to prevent unnecessary rounds of MDA and to monitor for C. trachomatis recrudescence
Lipidomic QTL in Diversity Outbred mice identifies a novel function for α/β hydrolase domain 2 (Abhd2) as an enzyme that metabolizes phosphatidylcholine and cardiolipin.
We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids
Immunopathogenesis of Progressive Scarring Trachoma: Results of a 4-Year Longitudinal Study in Tanzanian Children.
Trachoma is initiated during childhood following repeated conjunctival infection with Chlamydia trachomatis, which causes a chronic inflammatory response in some individuals that leads to scarring and in-turning of the eyelids in later life. There is currently no treatment to halt the progression of scarring trachoma due to an incomplete understanding of disease pathogenesis. A cohort study was performed in northern Tanzania in 616 children aged 6 to 10 years at enrollment. Every 3 months for 4 years, children were examined for clinical signs of trachoma, and conjunctival swabs were collected for C. trachomatis detection and to analyze the expression of 46 immunofibrogenic genes. Data were analyzed in relation to progressive scarring status between baseline and the final time point. Genes that were significantly associated with scarring progression included those encoding proinflammatory chemokines (CXCL5, CCL20, CXCL13, and CCL18), cytokines (IL23A, IL19, and IL1B), matrix modifiers (MMP12 and SPARCL1), immune regulators (IDO1, SOCS3, and IL10), and a proinflammatory antimicrobial peptide (S100A7). In response to C. trachomatis infection, IL23A and PDGF were significantly upregulated in scarring progressors relative to in nonprogressors. Our findings highlight the importance of innate proinflammatory signals from the epithelium and implicate interleukin 23A (IL-23A)-responsive cells in driving trachomatous scarring, with potential key mechanistic roles for PDGFB, MMP12, and SPARCL1 in orchestrating fibrosis
Immunohistochemical Analysis of Scarring Trachoma Indicates Infiltration by Natural Killer and Undefined CD45 Negative Cells.
INTRODUCTION: The phenotype and function of immune cells infiltrating the conjunctiva in scarring trachoma have yet to be fully characterized. We assessed tissue morphology and immunophenotype of cellular infiltrates found in trachomatous scarring compared to control participants. METHODOLOGY: Clinical assessments and conjunctival biopsy samples were obtained from 34 individuals with trachomatous scarring undergoing trichiasis surgery and 33 control subjects undergoing cataract or retinal detachment surgery. Biopsy samples were fixed in buffered formalin and embedded in paraffin wax. Hematoxylin and eosin (H&E) staining was performed for assessment of the inflammatory cell infiltrate. Immunohistochemical staining of single markers on individual sections was performed to identify cells expressing CD3 (T-cells), CD4 (helper T-cells), CD8 (suppressor/cytotoxic T-cells and Natural Killer, NK, cells), NCR1 (NK cells), CD20 (B-cells), CD45 (nucleated hematopoietic cells), CD56 (NK and T-cells), CD68 (macrophages/monocytes) and CD83 (mature dendritic cells). The degree of scarring was assessed histologically using cross-polarized light to visualize collagen fibres. PRINCIPLE FINDINGS: Scarring, regardless of clinical inflammation, was associated with increased inflammatory cell infiltrates on H&E and CD45 staining. Scarring was also associated with increased CD8+ and CD56+ cells, but not CD3+ cells, suggestive of a NK cell infiltrate. This was supported by the presence of NCR1+ cells. There was some increase in CD20+ cells, but no evidence for increased CD4+, CD68+ or CD83+ cells. Numerous CD45 negative cells were also seen in the population of infiltrating inflammatory cells in scarred conjunctiva. Disorganization of the normal collagen architecture was strongly associated with clinical scarring. CONCLUSIONS/SIGNIFICANCE: These data point to the infiltration of immune cells with a phenotype suggestive of NK cells in conjunctival trachomatous scarring. A large proportion of CD45 negative inflammatory cells were also present. Future work should seek to understand the stimuli leading to the recruitment of these cells and their role in progressive scarring
The First Provenance Challenge
The first Provenance Challenge was set up in order to provide a forum for the community to help understand the capabilities of different provenance systems and the expressiveness of their provenance representations. To this end, a Functional Magnetic Resonance Imaging workflow was defined, which participants had to either simulate or run in order to produce some provenance representation, from which a set of identified queries had to be implemented and executed. Sixteen teams responded to the challenge, and submitted their inputs. In this paper, we present the challenge workflow and queries, and summarise the participants contributions
Differential frequency of NKG2C/KLRC2 deletion in distinct African populations and susceptibility to Trachoma: a new method for imputation of KLRC2 genotypes from SNP genotyping data.
NKG2C is an activating receptor that is preferentially expressed on natural killer (NK) cells. The gene encoding NKG2C (killer cell lectin-like receptor C2, KLRC2) is present at different copy numbers in the genomes of different individuals. Deletion at the NKG2C locus was investigated in a case-control study of 1522 individuals indigenous to East- and West-Africa and the association with the ocular Chlamydia trachomatis infection and its sequelae was explored. The frequency of homozygous KLRC2 deletion was 13.7 % in Gambians and 4.7 % in Tanzanians. A significantly higher frequency of the deletion allele was found in West-Africans from the Gambia and Guinea-Bissau (36.2 % p = 2.105 × 10(-8), 26.8 % p = 0.050; respectively) in comparison to East-African Tanzanians where the frequency of the deletion is comparable to other human populations (20.9 %). We found no evidence for an association between the numbers of KLRC2 gene copies and the clinical manifestations of trachoma (follicular trachoma or conjunctival scarring). A new method for imputation of KLRC2 genotypes from single nucleotide polymorphism (SNP) data in 2621 individuals from the Gambia further confirmed these results. Our data suggest that NKG2C does not play a major role in trachomatous disease. We found that the deletion allele is present at different frequencies in different populations but the reason behind these differences is currently not understood. The new method offers the potential to use SNP arrays from genome wide association studies to study the frequency of KLRC2 deletion in other populations and its association with other diseases
The Newcomer Health Clinic in Nova Scotia: A Beacon Clinic to Support the Health Needs of the Refugee Population
Abstract
Refugees tend to have greater vulnerability compared to the general population reporting greater need for physical,
emotional, or dental problems compared to the general population. Despite the importance of creating strong
primary care supports for these patients, it has been demonstrated that there is a significant gap in accessing
primary care providers who are willing to accept the refugee population. These have resulted in bottlenecks in the
transition or bridge clinics and have left patients orphaned without a primary care provider. This in turn results
in higher use of emergency service and other unnecessary costs to the healthcare system. Currently there are few
studies that have explored these challenges from primary care provider perspectives and very few to none from
patient perspectives. A novel collaborative implementation initiative in primary healthcare (PHC) is seeking to
improve primary medical care for the refugee population by creating a globally recommended transition or beacon
clinic to support care needs of new arrivals and transitions to primary care providers. We discuss the innovative
elements of the clinic model in this paper
The conjunctival microbiome before and after azithromycin mass drug administration for trachoma control in a cohort of Tanzanian children.
Background: Trachoma, caused by ocular infection with Chlamydia trachomatis, is a neglected tropical disease that can lead to blinding pathology. Current trachoma control programmes have successfully used mass drug administration (MDA) with azithromycin to clear C. trachomatis infection and reduce transmission, alongside promoting facial cleanliness for better personal hygiene and environmental improvement. In areas of low-trachoma endemicity, the relationship between C. trachomatis infection and trachomatous disease weakens, and non-chlamydial bacteria have been associated with disease signs. Methods: We enrolled a cohort of children aged 6-10 years from three adjacent trachoma endemic villages in Kilimanjaro and Arusha regions, Northern Tanzania. Children were divided into four clinical groups based on the presence or absence of ocular C. trachomatis infection and clinical signs of trachomatous papillary inflammation (TP). To determine the impact of treatment on the ocular microbiome in these clinical groups, we performed V4-16S rRNA sequencing of conjunctival DNA from children 3-9 months pre-MDA (n = 269) and 3 months post-MDA (n = 79). Results: Chlamydia trachomatis PCR-negative, no TP children had the highest pre-MDA ocular microbiome alpha diversity, which was reduced in C. trachomatis infected children and further decreased in those with TP. Pre-MDA, Haemophilus and Staphylococcus were associated with C. trachomatis infection with and without concurrent TP, while Helicobacter was increased in those with TP in the absence of current C. trachomatis infection. Post-MDA, none of the studied children had ocular C. trachomatis infection or TP. MDA increased ocular microbiome diversity in all clinical groups, the change was of greater magnitude in children with pre-MDA TP. MDA effectively reduced the prevalence of disease causing pathogenic non-chlamydial bacteria, and promoted restoration of a normal, healthy conjunctival microbiome. Conclusion: We identified Helicobacter as a non-chlamydial bacterium associated with the clinical signs of TP. Further investigation to determine its relevance in other low-endemicity communities is required. MDA was shown to be effective at clearing C. trachomatis infection and other non-chlamydial ocular pathogens, without any detrimental longitudinal effects on the ocular microbiome. These findings suggest that azithromycin MDA may be valuable in trachoma control even in populations where the relationship between clinical signs of trachoma and the prevalence of current ocular C. trachomatis infection has become dissociated
- …