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Abstract

We and others have previously shown that genetic association can be used to make causal

connections between gene loci and small molecules measured by mass spectrometry in the

bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several

phospholipids in liver showed strong genetic association to distinct gene loci. In this study,

we integrated gene expression data with genetic association data to identify a single gene at

the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/

β-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated

this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The

Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phospha-

tidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids,

cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that

Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.

Author summary

Lipids have broad roles in normal physiology and disruptions to lipid metabolism have

been linked to disease development; new roles for the enzymes that metabolize lipids are

still being discovered. To identify novel genes associated with a wide array of liver lipids,

we conducted a genetic screen of untargeted liver lipidomics in a genetically diverse

mouse population. We identified the enzyme, Abhd2, as a candidate driver of multiple

liver phospholipids. Further, we validated Abhd2 in a whole-body knockout mouse
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model, where loss of Abhd2 resulted in increased liver phosphatidylcholine and a marked

decrease in the mitochondrial lipids, cardiolipin and phosphatidylglycerol. Thus, the

genetic screen and in vivo validation enabled us to discover a previously unknown role of

Abhd2 in regulating liver phospholipids, including those associated with mitochondrial

membranes. Our study highlights the power of lipid genetic screens to nominate and

identify novel substrates for enzymes and their larger role in physiology.

Introduction

Lipids play a variety of roles in physiology, including providing structure, signaling and as fuel

sources. Disruptions to lipid metabolism can lead to disease states such as obesity [1, 2], insulin

resistance [3, 4], cardiovascular disease [5, 6], and hepatic steatosis [7, 8]. Manipulations to

lipid composition in plasma, tissues, and organelles can have a profound impact on disease

susceptibility. For example, alterations in the fatty acid compositions of lipids in the endoplas-

mic reticulum (ER) have been shown to affect obesity-associated ER stress and to improve glu-

cose metabolism in a leptin-deficient mouse model of obesity [9].

Improvements in detection methods and their sensitivity, such as untargeted lipidomics,

have allowed for discovery of previously undefined roles of lipids in physiology. Within the past

decade, a new class of lipids (fatty acid esters of hydroxy fatty acids, FAHFAs) have been discov-

ered [10]. For example, the identification of FAHFAs as a novel bioactive lipid class has opened

a new field of study into their roles in normal physiology and metabolic disease [11–13].

Commensurate with the diversity of lipids is the diversity of enzymes that metabolize lipids.

One substantial challenge is discovering the in vivo substrates of lipid metabolizing enzymes

and the enzymes responsible for synthesis and turnover of newly discovered lipids.

We have used genetics to assist us in establishing a causal link between enzymes and their

substrates. When we perform lipidomic surveys in the context of a segregating population, we

can identify loci where specific lipid species are genetically associated with loci harboring

genes that encode highly plausible candidate enzymes responsible for the metabolism of the

lipids. In a prior study, we showed that the substrate and product of an enzyme in glycosphin-

golipid metabolism mapped to a locus containing that enzyme [14]. This was a proof-of-prin-

ciple that genetics could be used to de-orphanize lipid metabolism enzymes.

The same study identified several ABHD members as modulators of lipid classes [14]. In

validation experiments, ABHD1 and ABHD3 overexpression revealed distinct specificity for

lipid classes and acyl chain lengths. The ABHD family of such enzymes (α/β -hydrolase

domain) has 23 known members, which are characterized by a α/β -hydrolase fold and a cata-

lytic serine hydrolase domain [15, 16]. ABHD6 is the most characterized lipase in this family,

with a wide variety of physiological roles including adipose biology, islet insulin secretion, and

cold tolerance [17–20]. ABHD3, another lipase, was shown to selectively modulate phospho-

lipids with C14 acyl chain lengths [21]. The biological roles of many ABHD family members

are still being discovered. Here, we incorporate murine liver untargeted, mass spectrometry-

based lipidomics and quantitative trait loci (QTL) genetics to identify α/β-hydrolase domain 2

(Abhd2) as a novel driver of hepatic phospholipids.

Results

Identification of ABHD2 as novel driver of liver phosphatidylcholine

In a recent genetic screen of circulating and hepatic lipids in Diversity Outbred (DO) mice, we

identified a quantitative trait locus (QTL) for multiple phospholipids phosphatidylcholine
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(PC) and phosphatidylethanolamine (PE) on chromosome 7 at ~79 Mbp [22]. In parallel, we

performed RNA-sequencing to survey the liver transcriptome in the same DO mice that were

used for the lipidomic survey, enabling us to identify expression QTL (eQTL) for all genes. We

found a strong association of the abundance of the Abhd2 mRNA with SNPs located near the

Abhd2 gene (a cis-eQTL) with a LOD of 65. This QTL co-mapped with the phospholipid QTL

on chromosome 7 (Fig 1A).

DO mice segregate alleles from eight founder strains. We can identify the contribution of

each allele to a given phenotype and display the allele effect patterns. The allele effect patterns

for the phospholipids and the Abhd2 eQTL were similar, partitioning the founder haplotypes

into two subgroups: CAST and WSB versus B6, A/J, NOD and 129 (Fig 1B). However, the

directionality of the haplotype separation was different for the phospholipids and Abhd2
expression. Whereas alleles derived from CAST and WSB were associated with high expression

Fig 1. Identification of Abhd2 as a driver of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in liver. (A)

LOD profiles for Abhd2 expression and abundance of several phospholipids in liver identify a common quantitative trait

locus (QTL) at ~79 Mbp on chromosome 7. (B) Allele effects for the phospholipids and Abhd2 expression at the

chromosome 7 QTL. LOD scores are shown along the right margin and genotypes for the alleles (associated strains) are listed

along the top axis. (C) Chromosome 7 SNP association profiles for PC 20:4 QTL (left axis) and Abhd2 eQTL (right axis). All

protein-coding genes located between 78.5 and 79.7 Mbp are shown. A block of SNPs with highest association to PC 20:4 and

Abhd2 expression are centered over Abhd2 gene (yellow highlight). (D) Mediation analysis was performed on PC 20:4 QTL

by conditioning the lipid QTL on individual genes across the genome. Conditioning on Abhd2 resulted in the only

significant decrease in the LOD for PC 20:4.

https://doi.org/10.1371/journal.pgen.1010713.g001

PLOS GENETICS Abhd2 drives hepatic phospholipid composition

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010713 July 31, 2023 3 / 18

https://doi.org/10.1371/journal.pgen.1010713.g001
https://doi.org/10.1371/journal.pgen.1010713


of Abhd2, the same alleles were associated with lower abundance of phospholipids (Fig 1B).

Thus, the phospholipids and Abhd2 expression show shared but inverted genetic architecture.

This inverse pattern is indicative of a “substrate” signature, suggesting that Abhd2 participates

in the phospholipid’s degradation.

Next, we identified the SNPs most strongly associated with the phospholipids and the

expression of Abhd2. The QTL for PC-20:4 peaks at ~79.2 Mbp and includes a block of SNPs

with strongest association, which span from ~79.2 to ~79.4 Mbp on chromosome 7 (Fig 1C).

The gene for Abhd2 is located ~79.3 Mbp, right under the SNPs with strongest association to

PC-20:4. The SNP association profile for the Abhd2 cis-eQTL was the same as that for PC-

20:4, suggesting a common genetic architecture for the lipids and Abhd2 expression. There are

67 protein-coding and non-coding genes that are located between 78.2 and 80.2 Mbp on Chr 7

(S1 Table).

We next used mediation analysis to identify a causal gene driver from among the genes

present at the phospholipid QTL. In mediation analysis, the QTL for a lipid is conditioned on

the expression of all other genes, including those at the locus to which the lipid maps. If the

genetic signal of the lipid QTL decreases upon conditioning of the expression level of a specific

gene, that gene becomes a strong candidate as a driver for the lipid QTL. We focused on the

QTL for PC-20:4, as this demonstrated the strongest genetic signal (Fig 1A). Mediation of the

PC-20:4 QTL against the expression of Abhd2 in liver resulted in a large drop in the LOD

score for the PC 20:4 QTL (Fig 1D). To extend these observations, we asked if Abhd2 is a

strong driver for all phospholipids mapping to the chromosome 7 QTL. For the seven phos-

pholipids with a QTL to the Abhd2 gene locus, mediation against Abhd2 expression resulted in

the largest drop in the LOD scores (S1 Fig). In summary, the inverse allele effects for the phos-

pholipid versus Abhd2 expression profiles strongly suggest that Abhd2 functions as a negative

driver of the hepatic phospholipid QTL on chromosome 7.

Experimental validation of Abhd2 as a driver of liver phospholipids

To determine if Abhd2 is a key driver of liver phospholipids, we obtained a whole-body knock-

out of Abhd2 from Dr. Polina Lishko at UC Berkeley [23, 24]. Wildtype (WT) and Abhd2
knockout (Abhd2KO) mice were maintained on the same Western diet (WD), high in fat and

sucrose, that was provided to DO mice used for the lipidomic genetic screen [14].

To experimentally validate the genetic prediction that Abhd2 is a driver of liver phospholip-

ids (PC and PE), we performed mass spectrometry (MS)-based lipidomics on liver tissue from

male and female WT and Abhd2KO mice. A total of 583 unique lipid species were quantified

(S2 and S3 Tables), including 67 and 50 PC and PE lipids, respectively. Fig 2 highlights the

liver lipids that were the most differentially abundant between WT and Abhd2KO mice. Female

Abhd2KO mice had 21 liver lipids decreased and 9 lipids increased (Fig 2A), whereas male

Abhd2KO mice showed 44 and 16 liver lipids decreased and increased, respectively (Fig 2B).

Consistent with the prediction from the genetic screen, the PC and PE species that mapped to

the chromosome 7 QTL were significantly increased in liver from both male and female

Abhd2KO mice (Fig 2C).

In addition to PC and PE, other lipids were significantly altered in the liver of Abhd2KO

mice. For example, several species of cardiolipin (CL) (Fig 2D) and phosphatidylglycerol (PG)

(S2A Fig) were significantly reduced in liver from male, but not female, Abhd2KO mice. CL

and PG are synthesized in mitochondria[25] and play important roles in mitochondrial func-

tion [26]. To determine if the decrease in CL and PG levels in Abhd2KO males reflect a change

in mitochondrial number, we performed quantitative PCR for several mitochondrial-encoded

genes. In both male and female Abhd2KO mice, the expression of eight mitochondrial-encoded
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Fig 2. Abhd2KO have reduced levels of hepatic lipids predicted from lipidomic genetic screen. MS-based lipomics was used to survey the level of ~580 lipids

in liver of WT and Abhd2KO mice. A total of 29 and 60 lipids were differentially abundant in female (A) and male (B) Abhd2KO mice. Specific lipid classes (PC

and PE, CL and PG) are indicated by color. In both female and male mice, several phospholipid species were increased in Abhd2KO mice (C). These same lipids

demonstrated a QTL to the Abhd2 gene locus on chromosome 7. Male Abhd2KO mice have a significant decrease in seven cardiolipin (CL) species (D). PC and

CL data are presented as pmol lipid per mg liver tissue.

https://doi.org/10.1371/journal.pgen.1010713.g002
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genes was not significantly different in WT vs. Abhd2KO mice (S2B Fig). These results suggest

that lower levels of hepatic CL and PG in male Abhd2KO mice are not the consequence of

reduced mitochondrial number. It is therefore more likely that ABHD2 plays a key role in the

metabolism of these two mitochondrial lipids.

To provide additional support for ABHD2 in regulating hepatic PG and CL levels, we asked

if there was genetic association for CL and PG lipid species in liver among DO mice. We iden-

tified several QTL for both lipids, including a hotspot on chromosome 3 at ~46 Mbp where

several CL species co-mapped (S4 Table). CL-16.0/18.1/16.0/18.1 yielded the strongest genetic

signal on chromosome 3, with a LOD of ~12, along with possible secondary QTL on chromo-

somes 7 and 13 (Fig 3A). Interestingly, the gene Abhd18, which is relatively uncharacterized

but has been localized to mitochondria [27], is physically located at the CL QTL on chromo-

some 3, raising the possibility that Abhd18 and Abhd2 work in concert to regulate CL levels.

While no CL species mapped to the Abhd2 gene locus on chromosome 7, conditioning CL on

PC-20.4/22.6 as an additive covariate resulted in CL acquiring a QTL to the Abhd2 locus

(Fig 3A). This QTL on chromosome 7 of CL adjusted by PC demonstrates an allele pattern

that is like that of the cis-eQTL for Abhd2, and the inverse of the PC QTL (Fig 3B), consistent

with CL being a downstream product of ABHD2-dependent metabolism of PC. Similar results

were observed for two PG lipids; when conditioned on PC-20.4/22.6, QTL were acquired to

the Abhd2 gene locus (S5 Table).

Fig 3. A cardiolipin hotspot on chromosome 3 is associated with a phosphatidylcholine hotspot on chromosome 7. (A) Genome-wide LOD profile of

liver PC (20:4/22:6, blue) identified a QTL on chromosome 7 at ~79 Mbp. Genome-wide LOD profiles for CL (16:0/18:1/16:0/18:1) without (tan) and with

(red) conditioning on PC (20:4/22:6) identified QTL on chromosomes 3 at ~46 Mbp and 7 at ~79 Mbp, respectively. (B) Allele effects of CL (left), PC

(middle), and CL conditioned on PC as an additive covariate (right, denoted CL|PC). CL and PC show distinct allele effect pattern; however, CL conditioned

on PC shows a similar, but inverse pattern to PC.

https://doi.org/10.1371/journal.pgen.1010713.g003

PLOS GENETICS Abhd2 drives hepatic phospholipid composition

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010713 July 31, 2023 6 / 18

https://doi.org/10.1371/journal.pgen.1010713.g003
https://doi.org/10.1371/journal.pgen.1010713


Changes in fatty acyl composition (number of carbons and degree of saturation) have been

associated with differential response to metabolic stressors [28, 29]. Therefore, we evaluated

the composition of the acyl chains in PC, PG, and CL lipids in WT and Abhd2KO mice (S2C–

S2E Fig). Both PC and PG lipid classes were equally represented by acyl chain lengths of C16

and C18; in CLs, however, C18 comprised more than 95% of the acyl chains (S2C–S2E Fig).

PCs were primarily composed of saturated fatty acids, PGs had similar monounsaturated and

saturated fatty acyl chains (~43% and 50%, respectively), while 80% of CL fatty acyl chains con-

tained two double bonds (S2C–S2E Fig). Acyl chain length and degree of saturation for PC,

PG, and CL species were not different in Abhd2KO mice. Taken together, these results suggest

that ABHD2 is not involved in specific alteration of the acyl chain composition of

phospholipids.

Physiological characterization of Abhd2KO mice

While the increase in hepatic phospholipids we observed in the Abhd2KO mouse confirms the

predictions from the genetic screen that Abhd2 is a negative driver of these lipids, it does not

inform us about the physiological role of ABHD2. To gain a better understanding of this, we

performed a series of physiological measurements in WT and Abhd2KO mice.

WT and Abhd2KO mice demonstrated similar growth curves (S3A and S3E Fig) and com-

parable fasting glucose, insulin, and triglyceride (TG) profiles (S3B–S3D and S3F–S3H Fig).

At ~24 weeks of age, body weight did not differ among female mice (WT 32 ± 1g vs. Abhd2KO

36 ± 12g, S4A Fig); however, Abhd2KO females showed greater fat mass (S4B Fig), greater fat

mass percentage (S4C Fig) and decreased lean mass percentage (S4E Fig). Male mice did not

differ in body weights or body composition (S4F–S4J Fig).

To evaluate a role for Abhd2 deletion on broad metabolic pathways, we performed an oral

glucose tolerance test (oGTT) to assess whole-body insulin signaling and glucose homeostasis,

a β3-adrenergic receptor agonist tolerance test (β3TT) to examine differences in adipose lipoly-

sis and glucose metabolism, and a fast/re-feed (FRF) paradigm to probe liver lipolysis/lipogen-

esis pathways.

During the oGTT, no differences in plasma glucose, insulin, or C-peptide levels were

observed for male or female WT vs Abhd2KO mice (S5 Fig). Administration of CL-316,243 (a

β3-adrenergic receptor agonist) resulted in a marginal increase in plasma glucose in male

Abhd2KO mice during the β3TT (S6 Fig). However, area under the curve (AUC) for glucose,

insulin, free fatty acids, and glycerol were all unchanged in Abhd2KO mice (S6 Fig). Similarly,

circulating fatty acids were not different for WT vs. Abhd2KO mice during the fast/re-feed par-

adigm (S7 Fig). Another member of the ABHD family of enzymes, ABHD6, has been shown

to have a direct effect on islet insulin secretion by hydrolyzing monacylglycerols, inhibiting

MUNC13-1 action and thereby regulating insulin granule release [20]. To directly evaluate the

effect of ABHD2 on pancreatic β-cell function, we determined insulin secretion from cultured

islets isolated from WT and Abhd2KO mice. Insulin secretion in response to varying glucose

concentrations or monoacylglycerol (2-arachidonoylglycerol or 1-palmitoylglycerol) was the

same for WT and Abhd2KO mice (S8 Fig).

Given that hepatic phospholipids have been shown to play a major role in lipoprotein

metabolism and cholesterol homeostasis [30–33], we measured circulating total cholesterol

and triglycerides (TG) in WT and Abhd2KO mice. Total cholesterol and TG were not different

in Abhd2KO mice (S9A and S9B Fig). To assess whole-body cholesterol metabolism, we mea-

sured biliary and hepatic cholesterol content. These remained unchanged in Abhd2KO mice

(S9C Fig). Hepatic cholesterol levels showed a marginal increase in male, but not female

Abhd2KO mice (S9D Fig).
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To assess lipoprotein classes (e.g., LDL, HDL), we performed fast protein liquid chromatog-

raphy (FPLC) on plasma from WT and Abhd2KO mice. Cholesterol in the individual FPLC

fractions did not differ between genotypes of females (S9E Fig) or males (S9F Fig). No differ-

ences were detected for total cholesterol across the lipoprotein fractions for WT vs. Abhd2KO

mice (S9G Fig).

Given the marginal increase in hepatic cholesterol levels in male Abhd2KO mice (S9D Fig),

we evaluated hepatic LDL receptor (LDLR) protein levels by western blot analysis. LDLR pro-

tein was not different between female (S9H Fig) or male (S9I Fig) WT and Abhd2KO mice (S9J

Fig). Taken together, while our data supports Abhd2 as a driver of several hepatic phospholipid

and cardiolipin (in male) species, we were unable to link these changes to differences in serum

lipoproteins, suggesting that the role of ABHD2 in phospholipid metabolism is confined to

intracellular lipids.

Discussion

Genetic diversity plays a pivotal role in lipid metabolism and homeostasis. By leveraging

genetic diversity of murine populations, it is possible to define novel drivers of physiological

traits, including lipid classes.

Through untargeted MS-based lipidomics in the context of a genetic screen, our study is

the first to nominate and validate Abhd2 as a genetic driver of hepatic phosphatidylcholine

and phosphatidylethanolamine. Phospholipid species (PC and PE) that mapped to chromo-

some 7 were increased in livers of knockout mice (both sexes), following the substrate signa-

ture prediction of our genetic screen. By integrating lipidomics and transcriptomics, we show

how a mouse genetic screen can be used to identify novel drivers of hepatic lipids.

Abhd2 has been previously characterized as a monoacylglycerol lipase with potent effects

on male fertility [24] and ovulation in female mice [23]. In sperm, ABHD2 is activated by pro-

gesterone and cleaves monoacylglycerols (1-arachadonoylglycerol and 2-arachadonoylgly-

cerol) to remove the inhibition of the CatSper calcium channel, thereby allowing for sperm

activation. In a gene-trap mouse model of age-related emphysema, loss of Abhd2 resulted in

decreased PC levels in bronchoalveolar lavage [34]. These Abhd2-deficient mice had increased

lung macrophage infiltration and inflammatory markers and spontaneously developed

emphysema with aging. It is interesting that their study showed a decrease in PC lipids with

loss of Abhd2, whereas PCs increased in livers of our whole-body Abhd2KO mice, perhaps

highlighting tissue-specific roles of ABHD2. Nevertheless, Abhd2 appears to have a causative

role in PC species homeostasis. Our study is the first to demonstrate an in vivo role for Abhd2
in phospholipid regulation in non-reproductive tissues.

An unexpected finding was a decrease in cardiolipins and phosphatidylglycerols in male

Abhd2KO mice. Cardiolipins comprise ~20% of the inner mitochondrial membrane, whereas

phosphatidylglycerols reside in the outer mitochondrial membrane [26]. To explore a genetic

association between PC and CL or PG, we performed QTL analyses in which the PC lipid

showing strongest association to the Abhd2 gene locus (PC-20.4/22.6) was used as an additive

covariate when mapping CL or PG. This QTL analysis yielded an intriguing result: CL and PG

acquired QTL at the Abhd2 locus with an inverted allele signature to that for the PC. This

inverted allele signature is also indicative of a substrate signature, where an increase in PC is

associated with a decrease in PG and CL. Thus, ABHD2, through its effect on PC, may indi-

rectly play a role in the synthesis of CL species.

One hypothesis for ABHD2’s effect on CL biosynthesis is through the role of an acyltrans-

ferase. ABHD2 contains two enzymatic motifs: the canonical serine hydrolase motif and the

highly conserved HxxxxD acyltransferase motif between H120 and D125. Synthesis of CL
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involves a transfer of a fatty acyl chain from PC or PE phospholipids to monolysocardiolipin

(MLCL) to form mature CL species. Four MLCL species were detected in our liver samples

(S3 Table). In males, there was a 2.5-fold reduction in one MLCL species (MLCL-56:6) in

Abhd2KO mice. If ABHD2 affected mature CL synthesis through a direct fatty acyl chain trans-

fer to MLCL, an increase in MLCL species would be expected. Therefore, the reduction in

MLCL indicates ABHD2’s role is likely upstream of mature CL synthesis. Since PG is also

required for CL synthesis, it’s also possible that the reduction in CL concentrations is second-

ary to alterations in PG concentrations [25]. In our initial QTL analyses of all liver lipids, we

identified a CL hotspot on chromosome 3 at ~46 Mbp, which includes the ABHD enzyme,

Abhd18. Recently, ABHD18 was shown to reside in the mitochondria [27]; however, its mech-

anism has not been well characterized. In the STRING protein-protein association network

database (string-db.org), ABHD2 and ABHD18 are predicted to have an interaction, although

this has not been experimentally validated [35]. It is possible that ABHD2 mediates utilization

of PC or its acyl chains in the synthesis of CL and PG, or that it interacts with another mito-

chondrial enzyme, such as ABHD18, to effect these changes.

It is important to note that changes to mitochondrial lipids were only observed in male

Abhd2KO mice, whereas the increase in PC and PE phospholipids occurred in both sexes. Pro-

gesterone-induced activation of ABHD2 is required for its lipid cleavage function and regulat-

ing ovulation in females [23, 24]; however, the effect of male sex hormones on ABHD2 has not

been demonstrated. In a study of cerebral cortex development, a perinatal testosterone spike

in male mice drove mitochondrial lipid composition and maturation [36]. It is possible that

ABHD2 is required for testosterone-dependent regulation of mitochondrial lipid synthesis or

maturation.

Reduced abundance of PG and CL lipids may indicate a reduction in total mitochondrial

number or a defect in the inner mitochondrial membrane leading to altered metabolic func-

tion. As a surrogate for mitochondrial number, we measured expression of key mitochondrial

genes by qPCR but did not see a sex-specific or genotype effect. Thus, the decrease in CL and

PG does not appear to be due to a reduction in mitochondrial number but does not rule out

altered mitochondrial function in liver from Abhd2KO mice.

The monoacylglycerol lipase, Abhd6, has also been shown to modulate mitochondrial lipid

metabolism [37, 38]. However, the changes in lipid class concentrations were in the opposite

direction of the Abhd2 lipids. Loss of Abhd6 results in an increase in liver PG, which was

attributed to defective degradation of lysophosphatidylglycerol (LPG) [37]. Another group

later showed increased plasma concentrations of bis(monoacylglycerol)phosphate (BMP) in

mice lacking Abhd6 and in humans with a loss-of-function mutation in ABHD6 [38]. Both

BMP and CL synthesis require PG as a precursor [39]; therefore, it is possible that the reduc-

tion of PG and CL content in the Abhd2KO livers may reflect alterations in one or both of these

pathways. Recently, the Abhd2 locus was linked to age-related macular degeneration (AMD)

through a human GWAS of mitochondrial variants [40]. Alterations to mitochondrial func-

tion and lipid oxidation have been implicated in AMD disease progression [41, 42]. We did

not assess phenotypes related to vision; however, it would be intriguing to determine a role for

Abhd2 in mitochondrial function and AMD disease risk. We observed a reduction in CL in liv-

ers of Abhd2KO mice; thus, we are tempted to speculate that Abhd2 deficiency may contribute

to macular degeneration through its effects on CL.

Loss of Abhd2 has been previously shown to regulate vascular smooth muscle migration

and induce blood vessel intima hyperplasia after a cuff experiment in a mouse model [43]. The

same group showed an increase in macrophage ABHD2 expression abundance in vulnerable

plaques in humans [44] but no mechanism of action was determined.
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In human genome-wide association studies [45], there is a significant region on chromo-

some 15 associated with coronary artery disease (CAD). This locus sits between two genes:

ABHD2 and MFGE8. Soubeyrand et al. showed that deletion of the intergenic locus results in a

marked increase in MFGE8 expression but did not affect the expression of ABHD2 [46].

Knockdown of MFGE8 in coronary smooth muscle cell and monocytes inhibited proliferation,

indicating MFGE8 as the causal gene for CAD-associated at this locus [46]. Splice variants of

MFGE8 have been associated with reduced risk of atherosclerosis in FinnGen, a large Finnish

biobank study [47]. However, an in vivo role for MFGE8 has not been established. In our

genetic screen, hepatic expression of Mfge8 did not significantly correlate with hepatic lipids

or plasma lipoproteins. We did not observe a difference in plasma lipoproteins with Abhd2
deletion. We did not assess any indicators of vascular smooth muscle physiology or blood pres-

sure. Thus, ABHD2 is likely not the causative gene at the CAD-associated region on chromo-

some 15 in human GWAS.

All studies were completed in whole-body knockout mice, allowing us to definitively iden-

tify Abhd2 as the driver of the observed phenotypes. For this reason, one limitation of our

study is that we cannot speak to tissue-specific roles of Abhd2 on metabolic stress and disease

risk. It will be important for future studies to carefully consider tissue-specific knockout mod-

els to further refine our understanding of Abhd2’s role in physiology. Similarly, we did not

assess effects of Abhd2 at the subcellular level. Disruptions in phospholipid homeostasis could

lead to subcellular dysfunction, such as those seen in lysosomal storage disorders (LSD). We

did not observe sphingomyelin or cholesterol accumulation in liver nor evidence of muscle

wasting, which are often hallmarks of LSD. However, we did not perform microscopy of lyso-

somes to directly assess alterations to morphological features and our untargeted lipidomics

did not annotate bis(monoacylglycerol)phosphates, the key lipids of lysosomes. Additionally,

we did not expand on ABHD2’s known mechanisms, namely that it operates as a lipase to

cleave monoacylglycerols [24] and also contains an acyltransferase motif [15]. Instead, we

identified new substrates for ABHD2 and its potential roles in phospholipid homeostasis.

With biochemical approaches alone, it is challenging to discover novel candidate substrates

for known enzymes. Through integration of gene expression data with untargeted, mass-spec-

trometry lipidomics, we identified a hepatic phospholipid hotspot on chromosome 7 and

nominated Abhd2 as a novel driver of PC, PE, and cardiolipin. Using a whole-body knockout

mouse model, we validated Abhd2 as the causative gene for several PC and PE lipids, and CLs,

precisely as predicted by the QTL analysis. Our study demonstrates the power of metabolite

QTL analysis to discover novel candidate substrates for enzymes.

Methods

Ethics statement

All animal work was approved by the Institutional Animal Care and Use Committee at Uni-

versity of Wisconsin-Madison under protocol #A005821.

Mouse genetic screen to nominate novel drivers of hepatic lipid

metabolism

Details of the mouse genetic screen has been previously described [22]. Briefly, 500 Diversity

Outbred (DO) mice were obtained from Jackson Laboratories (Bar Harbor, ME) and main-

tained on a high-fat, high-sucrose diet (TD.08811, Envigo, Madison, WI) for 16 weeks. For

this study, livers from 384 mice (191 female, 193 male) were collected for transcriptomics and

untargeted mass spectrometry-based lipidomics. Mapping of gene expression and phenotypes
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were performed to identify quantitative trait loci (QTL) and nominate candidate drivers for

individual lipid species using the GRCm38 genome build and Ensembl 75 for gene annotation.

Genome scans were completed with R/qtl2 software [48], using sex and wave as additive covar-

iates. To investigate genetic associations between mitochondrial lipid classes and phosphati-

dylcholines mapping to chromosome 7, genome QTL scans were performed with sex, wave,

and PC-20:4/22:6 as additive covariates. A logarithm of odds (LOD) greater than 6.0 was used

as the threshold for identifying suggestive QTL and LOD greater than 7.5 identified significant

QTL. As previously described, LOD thresholds were defined through permutation testing to

establish a genome-wide family-wide error rate (FWER) for genome-wide QTL [14, 49]. Medi-

ation analysis to establish causality was performed by regression of the target phenotype on the

locus genotype to establish the direct genetic effect [50]. Next, we included the candidate gene

expression as a covariate in the regression. If the phenotype-genotype association was no lon-

ger significant in the conditional regression model, we considered the gene to be a mediator of

the genetic effect on the target locus.

Abhd2 mouse housing and maintenance

Whole-body Abhd2 heterozygous mice, generated on a C57BL/6N background [23], were a

kind gift of Dr. Polina Lishko at University of California–Berkley. All animal work was

approved by the Institutional Animal Care and Use Committee at University of Wisconsin-

Madison under protocol #A005821. Heterozygous mice were backcrossed with C57BL/6J mice

and bred to produce knockout mice and wild-type littermate controls. All mice were housed at

the University of Wisconsin–Madison animal facilities with standard 12-hour light/dark

cycles. Animals were weaned and provided a high-fat, high-sucrose diet (TD.08811, Envigo,

Madison, WI) and water ad libitum. At 23–25 weeks of age, mice were euthanized by carbon

dioxide asphyxiation and exsanguinated by cardiac puncture. Whole blood was collected with

EDTA, centrifuged at 10,000xg for 10 minutes at 4˚C and plasma separated. Tissues were col-

lected, snap frozen in liquid nitrogen, and stored at -80˚C until assay.

in vivo physiologic measurements

At 6, 10 and 14 weeks of age, mice were fasted four hours and blood collected by retro-orbital

bleed for measurement of plasma glucose (#23-666-286, FisherScientific), insulin (#SRI-13K,

MilliporeSigma) and triglycerides (#TR22421, ThermoFisher). At age 16 weeks, mice were

subjected to a 24-hour fast and 6-hour refeed to assess hepatic lipid storage during energy defi-

cits. Body weights and whole blood were collected at 0, 24, and 30 hours and plasma measured

for non-esterified fatty acids (NEFA) using the Wako Linearity Set (#999–34691, #995–34791,

# 991–34891, # 993–35191, FisherScientific). in vivo insulin action was assessed at 18 weeks of

age by an oral glucose tolerance test as previously described [22]. Mice were fasted for four

hours and given a 2 g/kg BW glucose dose by oral gavage. Blood was collected by retroorbital

eye bleed and assayed for glucose, insulin, and c-peptide concentrations. β3-adrenergic recep-

tor agonist tolerance tests (β3TT) were performed at 20 weeks of age on four-hour fasted mice.

Mice were dosed with 1 mg/kg BW of CL-316,243 by i.p. injection. Blood, collected by retroor-

bital eye bleed, was assayed for glucose, non-esterified fatty acids, glycerol, and insulin

content.

Liver lipidomics

Frozen tissues were sectioned to 10mg on dry ice and added to phosphate buffered saline

(PBS) and methanol containing internal stable isotope metabolomics standards (S6 Table).

Tissues were mechanically homogenized (Qiagen TissueLyser) for 5 minutes at maximum
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frequency (30.0 Hz/s). 20μL of homogenate was removed for protein quantification (Pierce

BCA Protein Assay Kit). Samples were mixed with methyl tertiary-butyl ether (MTBE), vor-

texed, centrifuged, and supernatant was transferred into new tube. Original samples were re-

extracted with MTBE: Methanol: dd-H2O (10:3:2.5), vortexed, centrifuged, and supernatant

was transferred into tubes containing the first extraction’s supernatant. Samples were evapo-

rated in a speed-vac and then resuspended with isopropyl alcohol: acetonitrile: dd-H2O

(8:2:2). Samples were then vortexed and centrifuged before transferring supernatant to glass

vials (Agilent Technologies). Samples were analyzed by liquid chromatography- tandem mass

spectrometry (LC-MS) with a 6545 UPLC-QToF mass spectrometer for non-targeted lipido-

mics. Results from LC-MS experiments were collected using Agilent Mass Hunter Worksta-

tion and analyzed using the software package Agilent Mass Hunter Quant B.07.00. Lipid

species were quantified based on exact mass and fragmentation patterns and verified by lipid

standards. Mass spectrometry was performed at the Metabolomics Core Facility at the Univer-

sity of Utah. Mass spectrometry equipment was obtained through NCRR Shared Instrumenta-

tion Grant 1S10OD016232-01, 1S10OD018210-01A1 and 1S10OD021505-01.

Liver, bile, and plasma cholesterol

Total cholesterol in undiluted plasma and bile was assessed with Infinity Cholesterol reagent

(TR13421, Thermo Scientific, Waltham, MA) and concentrations determined by a standard

curve. Liver cholesterol was extracted by homogenizing 50 mg of tissue in a TissueLyser with 1

mL chloroform:isopropanol:IGEPAL CA-630 (7:11:0.1). The organic phase was collected and

dried at 50˚C. Dried lipids were resuspended in 200μL cholesterol assay buffer (MAK043, Milli-

pore Sigma, St. Louis, MO) and total cholesterol determined following manufacturer’s protocol.

To analyze lipoprotein size distributions, plasma was analyzed using a Superose 6 10-

300GL column and size-exclusion fast protein liquid chromatography (FPLC). Fractions were

assayed for total cholesterol and triglycerides as previously described [51].

RT-PCR for mitochondrial genes

For mitochondrial gene analyses, DNA was isolated from liver samples (n = 5/sex/genotype)

with an overnight incubation in proteinase K. Isolated DNA was dried and resuspended in

ultrapure water for qPCR analysis. Mitochondrial gene expression (primers in S7 Table) were

normalized to the nuclear cystic fibrosis transmembrane conductance receptor (Cftr) and

fold-change calculated using the 2-ΔΔCt method.

Western blot analysis

Tissues were lysed in RIPA buffer and total protein determined by Pierce BCA assay (#23225,

ThermoFisher Scientific) to ensure equal loading. Samples (15–30 ug) were heat inactivated

with 4X Laemmli dye containing 4% 2-mercaptoethanol at 70˚C for 10 minutes and run on

7.5% tris-glycine gels following standard protocols. PVDF membranes were stained for total

protein with 0.1% ponceau S in 5% acetic acid, and then probed for the protein of interest. For

blotting of FPLC-separated plasma lipoprotein fractions, 25 μL of each fraction was incubated

with 4X Laemmli dye containing 4% 2-mercaptoethanol at 70˚C for 10 minutes and probed

for protein as described above. Primary and secondary antibodies are listed in S8 Table.

Statistical analyses

Statistical analysis of in vivomouse data and tissue assays were performed by ANOVA fol-

lowed by Tukey’s post-hoc analysis. Lipidomics data were analyzed using MetaboAnalystR
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[52]: liver lipid concentrations (pmol lipid/mg liver) were log10-transformed, normalized by

Pareto scaling, and then fold change calculated. Unless noted, data are presented as

mean ± standard error. Differences were considered significant at p<0.05.

Statement of data availability

Raw data for Abhd2 expression in 500 DO and Abhd2KO mouse phenotyping data are provided

as supporting information. DO liver lipidomic data has been previously published [14].

Supporting information

S1 Fig. Mediation analysis of phospholipid QTL identifies Abhd2 as candidate causal gene.

Mediation analysis of the QTL for seven liver lipids that map to the chromosome 7 locus

resulted in substantial LOD drop when conditioned on hepatic Abhd2 expression. Condition-

ing on all other genes did not result in any appreciable LOD drop for these lipids.

(TIF)

S2 Fig. Abhd2 deletion decreased hepatic phosphatidylglycerol concentrations but did not

alter mitochondrial gene expression or mitochondrial lipid acyl chain compositions. (A)

Despite significant reductions in several cardiolipin species in male mice, total hepatic cardio-

lipin levels in male and female mice did not differ by genotype. However, total phosphatidyl-

glycerol concentrations were decreased Abhd2KO mice compared to WT males (p<0.01). (B)

Mitochondrial gene expression, measured as a proxy for mitochondrial number, was not dif-

ferent by sex or genotype. Neither genotype nor sex affected fatty acyl composition of PC, PG

or CL in the livers of HF/HS-fed mice. (C) The hepatic phosphatidylcholine landscape was

diverse and primarily comprised of acyl chains of C16 or C18 in length and were saturated or

monounsaturated. (D) Phosphatidylglycerols were equally represented by fatty acyl lengths of

C16 and C18 and contained 0 or 1 double bond. (E) Cardiolipins were highly represented by

linoleate, with C18 being 95% of acyl lengths and 98% of CLs containing 1 or more double

bonds.

(TIFF)

S3 Fig. Whole-body deletion of Abhd2 did not alter growth rates nor fasting blood profiles

in C57BL/6J mice. Abhd2KO female (A) and male (E) mice showed similar growth curves to

WT mice. Fasting glucose (B, F), insulin (C, G), and triglycerides (D, H) did not differ by

genotype.

(TIFF)

S4 Fig. Loss of Abhd2 altered body compositions of female mice by increasing fat mass as

measured by DEXA. Body compositions of mice were measured at ~24 weeks of age by

DEXA. (A) Body mass of female mice were not significantly different. Fat mass, both as total

weight (B) and %body weight (C) increased in Abhd2KO female mice. Lean mass weight (D)

did not change with genotype in females, but lean mass as %body weight (E) was reduced in

Abhd2KO female mice. Male mice were not different in total body weight, fat, nor lean mass

(F-J). *p<0.05.

(TIFF)

S5 Fig. Assessment of insulin action by oral glucose tolerance test (oGTT) elicited similar

responses between genotypes of the same sex. (A) Female Abhd2KO mice showed a trend for

increased plasma glucose at 15 and 30-minute timepoints during the oGTT. Male Abhd2KO

mice were not different. (B) Area under the curve (AUC) for plasma glucose during the oGTT

did not differ by genotype. (C) Plasma insulin response to glucose stimulation were the same
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for genotypes of each sex, with all mice returning to baseline within two hours of receiving the

glucose bolus. (D) Insulin curve AUCs were not different. (E) C-peptide, a marker of insulin

secretion, was the same for genotypes of each sex during the oGTT, with no difference in AUC

(F). (G) The C-peptide/insulin ratio, used as a surrogate for insulin clearance, were not differ-

ent at 0, 15, and 30 minutes. (H) AUCs for C-peptide/insulin ratio were similar between geno-

types of the same sex.

(TIFF)

S6 Fig. β3-adregeneric receptor agonist stimulation failed to produce a physiologic

response in Abhd2 KO mice. Plasma glucose concentrations at various time points (A) and

total AUC for glucose (B) during β3-adregeneric receptor agonist stimulation was not different

in male or female Abhd2KO mice. Plasma insulin concentrations (C) and total AUC for insulin

(D) during the B3TT were the same for genotypes of each sex. Non-esterified fatty acid

(NEFA) concentration (E) and total AUC for NEFA (F), and glycerol concentration (G), and

AUC for glycerol (H) during the β3TT did not different for Abhd2KO female or male mice.

(TIFF)

S7 Fig. Loss of Abhd2 does not alter the physiological response to prolonged fasting or

refeeding. Following a 24-hr fast, female mice averaged a 1.7 ± 0.9 gm weight loss and an aver-

age 1.1 ± 0.1 gm weight gain following the 6-hour refeed period and were not different for

Abhd2KO versus WT mice (A). Plasma NEFAs, measured before and after prolonged fast, were

similar between genotypes (B). Male mice lost 2.5 ± 0.2 gm with prolonged fasting and

regained 0.6 ± 0.1 gm following refeeding and were not different between genotypes (C).

Plasma NEFAs of male mice during the fast/refeed protocol did not differ by genotype (D).

(TIFF)

S8 Fig. Loss of Abhd2 did not alter insulin secretion in response to glucose or monoacylgly-

cerol. Insulin secretion in response to varying glucose concentration, or two different monoa-

cyl-glycerols (2-AG or 1-PG) (A) and total islet insulin content (B) remained unchanged in

cultured islets from female and male Abhd2KO versus WT mice.

(TIFF)

S9 Fig. Loss of Abhd2 exerts a subtle influence on whole-body cholesterol metabolism.

Total plasma cholesterol (A) and triglycerides (B), biliary cholesterol (C), and hepatic choles-

terol (D) in female and male Abhd2KO versus WT mice. Male Abhd2KO mice showed a small

increase in hepatic cholesterol (p = 0.06). Plasma cholesterol lipoproteins were separated by

FPLC and assayed for cholesterol in female (E) and male (F) mice. Total AUC for cholesterol

in all FPLC fractions (G). Liver from female (H) and male (I) mice were analyzed for LDL-

receptor (LDLR) protein content by immunoblot. (J) Quantitation of LDLR protein abun-

dance was not different between genotypes of the same sex.

(TIFF)

S1 Table. 73 protein-coding and non-coding genes are located within a 2Mbp region flank-

ing liver lipid QTL.

(XLSX)

S2 Table. 37 lipid classes were detected by untargeted MS-based lipidomics in hepatic tis-

sue of WT and Abhd2KO mice.

(XLSX)
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S3 Table. 583 unique lipid species were detected in hepatic tissue of WT and Abhd2KO

mice.

(XLSX)

S4 Table. QTL of mitochondrial lipids conditioned on sex and wave.

(XLSX)

S5 Table. QTL of mitochondrial lipids conditioned on sex, wave, and PC 20:4_22:6.

(XLSX)

S6 Table. Internal standard for mass spectrometry-based lipidomics.

(XLSX)

S7 Table. Primer sequences for RT-PCR.

(XLSX)

S8 Table. Antibodies and source for western blot analyses.

(XLSX)

S1 Rawdata. Raw data for Abhd2 expression in 500 DO and Abhd2KO mouse phenotyping

data.
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