23 research outputs found

    Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice

    Get PDF
    Background: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/ dark (LD) cycle. Such ‘‘jet lag’ ’ treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. Methodology/Principal Findings: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. Conclusions/Significance: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that

    Discrimination of olive oil by cultivar, geographical origin and quality using potentiometric electronic tongue fingerprints

    Get PDF
    Legal regulations are set for protecting claims regarding olive oil geographical denomination. When meteorological or agroecological factors similarly affect different regions, the origin identification is a challenging task. This study demonstrated the use of a potentiometric electronic tongue coupled with linear discriminant analysis to discriminate the geographical origin of monovarietal Tunisian olive oil produced from local cv Chemlali (Kairouan, Sidi Bouzid or Sfax regions) and cv Sahli (Kairouan, Mahdia or Sousse regions). The potentiometric fingerprints of 12 or eight lipid sensors (for Chemlali and Sahli, respectively), selected using a simulated annealing meta-heuristic algorithm, allowed the correct prediction (repeated K-fold cross-validation) of the geographic production region with sensitivities of 92 ± 7% (Chemlali) and 97 ± 8% (Sahli). It was also confirmed the electronic tongue capability to classify Tunisian olive oil according to olive cultivar or quality grade. The results indicated the possible use of potentiometric fingerprints as a promising innovative strategy for olive oil analysis allowing assessing geographical origin, olive cultivar and quality grade, which are key factors determining olive oil price and consumers preference.This work was financially supported by Project POCI-01–0145-FEDER-006984 - Associate Laboratory LSRE-LCM, Project UID/QUI/00616/2013 - CQ-VR, and UID/AGR/00690/2013 - CIMO all funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) - and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/ BD/104038/2014). Souheib Oueslati is also grateful for the support of the Tunisian Ministry of Agriculture.info:eu-repo/semantics/publishedVersio
    corecore