4 research outputs found

    Aquatic plant diversity in hardwater streams across global and local scales

    Get PDF
    The variety of life forms within a given species, ecosystem, biome or planet is known as biodiversity. Biodiversity can also be referred as species diversity and species richness. Understanding the drivers of biodiversity requires an understanding of intertwined biotic and abiotic factors, including climate patterns over the earth, primary productivity processes, e.g. photosynthetic pathways which change with climate and latitude; latitude, geology, soil science, ecology and behavioural science. Diversity of living organisms is not evenly distributed; instead it differs significantly across the globe as well as within regions. The aim of my study is to try to understand the diversity patterns of aquatic plants, using both information derived from previous studies and by collecting new data across the globe, allowing me to examine the underlying mechanisms driving biodiversity at regional and local scales. Both geographical location and local environmental factors were found to contribute to variation in macrophyte assemblage and alpha diversity (i.e. number of species in a locality), with important roles being played by local biotic interactions and abiotic environmental factors. Overall aquatic plants, or macrophytes, play a significant role in the ecology of large numbers of freshwater ecosystems worldwide. For the purpose of my study only calcareous steams, located in both temperate and tropical/subtropical regions were included. Such streams are common in catchments throughout the world because approximately one fifth of the earth’s surface is underlain by carbonate-containing rock. Overall my findings in Chapter 3 provide evidence that there is a high variation in macrophyte assemblages of calcareous rivers across the different countries included in my study, broadly agreeing with information from the literature. I found two large groups based on species assemblages across the different countries included, i.e. a subtropical/tropical and a temperate group. As demonstrated in different parts of Chapter 4, it is possible to identify different 4 diversity responses of macrophyte functional groups to environmental conditions, at local scale, in hardwater rivers. Width and flow were found to be significantly affecting the distribution patterns of diversity of free-floating and floating-leaved rooted species, whereas diversity of marginal species was significantly related to alkalinity and width, and floating-leaved rooted diversity was significantly related to alkalinity. Last but not least submerged species were related to shading. Chapter 5 shows that variation in richness and community structure for hardwater river macrophytes can be partly explained by environmental variation relative to spatial processes in the British Isles (temperate scenario) and in Zambia (tropical scenario). Among the environmental variables, climatic ones explained a great part of species richness and composition distribution for the British Isles. Conversely in Zambia spatial processes made the greatest contribution to variation in hardwater river macrophyte species richness and community structure. Moreover Chapter 6 illustrates how macrophyte species richness, measured as alpha-diversity in calcareous rivers, was at best only very weakly attributed to latitudinal gradient. This is most likely due to the effect of other physical, chemical and biotic variables overriding broader-scale influences on species richness, at more local scales

    Environmental drivers of aquatic macrophyte communities in southern tropical African rivers:Zambia as a case study

    Get PDF
    The first-ever extensive macrophyte survey of Zambian rivers and associated floodplain waterbodies, conducted during 2006–2012, collected 271 samples from 228 sites, mainly located in five freshwater ecoregions of the world primarily represented in Zambia. The results supported the hypothesis that variation in macrophyte community structure (measured as species composition and diversity) in southern tropical African river systems, using Zambia as a case study area, is driven primarily by geographical variation in water physico-chemical conditions. In total, 335 macrophyte taxa were recorded, and a chronological cumulative species records curve for the dataset showed no sign of asymptoting: clearly many additional macrophyte species remain to be found in Zambian rivers. Emergent macrophytes were predominant (236 taxa), together with 26 floating and 73 submerged taxa. Several species were rare in a regional or international context, including two IUCN Red Data List species: Aponogeton rehmanii and Nymphaea divaricata. Ordination and classification analysis of the data found little evidence for temporal change in vegetation, at repeatedly-sampled sites, but strong evidence for the existence of seven groups of samples from geographically-varied study sites. These supported differing sets of vegetation (with eight species assemblages present in the sample-groups) and showed substantial inter-group differences in both macrophyte alpha-diversity, and geographically-varying physico-chemical parameters. The evidence suggested that the main environmental drivers of macrophyte community composition and diversity were altitude, stream order, shade, pH, alkalinity, NO3-N, and underwater light availability, while PO4-P showed slightly lower, but still significant variation between sample-groups

    World distribution, diversity and endemism of aquatic macrophytes

    Get PDF
    To test the hitherto generally-accepted hypothesis that most aquatic macrophytes have broad world distributions, we investigated the global distribution, diversity and endemism patterns of 3457 macrophyte species that occur in permanent, temporary or ephemeral inland freshwater and brackish waterbodies worldwide. At a resolution of 10 × 10° latitude x longitude, most macrophyte species were found to have narrow global distributions: 78% have ranges (measured using an approach broadly following the IUCN-defined concept “extent of occurrence”) that individually occupy <10% of the world area present within the six global ecozones which primarily provide habitat for macrophytes. We found evidence of non-linear relationships between latitude and macrophyte α- and γ-diversity, with diversity highest in sub-tropical to low tropical latitudes, declining slightly towards the Equator, and also declining strongly towards higher latitudes. Landscape aridity and, to a lesser extent, altitude and land area present per gridcell also influence macrophyte diversity and species assemblage worldwide. The Neotropics and Orient have the richest ecozone species-pools for macrophytes, depending on γ-diversity metric used. The region around Brasilia/Goiás (Brazil: gridcell 10–20 °S; 40–50 °W) is the richest global hotspot for macrophyte α-diversity (total species α-diversity, ST: 625 species/gridcell, 350 of them Neotropical endemics). In contrast, the Sahara/Arabian Deserts, and some Arctic areas, have the lowest macrophyte α-diversity (ST <20 species/gridcell). At ecozone scale, macrophyte species endemism is pronounced, though with a>5-fold difference between the most species-rich (Neotropics) and species-poor (Palaearctic) ecozones. Our findings strongly support the assertion that small-ranged species constitute most of Earth’s species diversity
    corecore