33 research outputs found

    Positive Surgical Margins in the 10 Most Common Solid Cancers.

    Get PDF
    A positive surgical margin (PSM) following cancer resection oftentimes necessitates adjuvant treatments and carries significant financial and prognostic implications. We sought to compare PSM rates for the ten most common solid cancers in the United States, and to assess trends over time. Over 10 million patients were identified in the National Cancer Data Base from 1998-2012, and 6.5 million had surgical margin data. PSM rates were compared between two time periods, 1998-2002 and 2008-2012. PSM was positively correlated with tumor category and grade. Ovarian and prostate cancers had the highest PSM prevalence in women and men, respectively. The highest PSM rates for cancers affecting both genders were seen for oral cavity tumors. PSM rates for breast cancer and lung and bronchus cancer in both men and women declined over the study period. PSM increases were seen for bladder, colon and rectum, and kidney and renal pelvis cancers. This large-scale analysis appraises the magnitude of PSM in the United States in order to focus future efforts on improving oncologic surgical care with the goal of optimizing value and improving patient outcomes

    Evaluación 360° por competencias para mandos medios y gerentes para empresa de pinturas

    No full text
    Documento en el que se registra la implementación de una retroalimentación 360° por competencias en la empresa Pinturas Prima como parte del Proyecto de Aplicación Profesional. Se inicia con una descripción de los antecedentes del proyecto; después, se da un marco teórico que sustenta la implementación de una campaña de sensibilización y de retroalimentación previa a los cursos de capacitación. Posteriormente, se plantea el diseño del proyecto, se describen las herramientas utilizadas para llevarlo a cabo, se analizan los resultados y se establecen las conclusiones

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p−Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p−Pb collisions at sNN−−−√=5.02 TeV are extended to a pseudorapidity gap of Δη∼8 between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of Δη∼8 for the first time in p−Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p−Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2({\eta}), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of −3.1<η<4.8 in various centrality classes in p−Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the v2(η) measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at √s = 13 TeV

    No full text
    The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at s√ = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (|η|<0.9) using the sequential recombination anti-kT algorithm with jet resolution parameters R = 0.2, 0.3, and 0.4 for the transverse momentum (pT) interval 5−110 GeV/c. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pT in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation functions zch and ξch are measured for different jet-pT intervals. Jet-pT independent fragmentation of leading jets is observed for wider jets except at high- and low-zch. The observed "hump-backed plateau" structure in the ξch distribution indicates suppression of low-pT particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zch particles accompanied by a suppression of high-zch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pT jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pT. These measurements provide important constraints to models of jet fragmentation

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
    corecore