11 research outputs found

    Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas

    Get PDF
    Opacity effects on extreme ultraviolet (EUV) emission from laser-produced tin (Sn) plasma have been experimentally investigated. An absorption spectrum of a uniform Sn plasma generated by thermal x rays has been measured in the EUV range (9-19 nm wavelength) for the first time. Experimental results indicate that control of the optical depth of the laser-produced Sn plasma is essential for obtaining high conversion to 13.5 nm-wavelength EUV radiation; 1.8% of the conversion efficiency was attained with the use of 2.2 ns laser pulses.</p

    Angular distribution control of extreme ultraviolet radiation from laser-produced plasma by manipulating the nanostructure of low-density SnO 2 targets

    Get PDF
    金沢大学先端科学・社会共創推進機構We have found that the divergence of a relatively monochromatic extreme ultraviolet (EUV) emission from a laser-produced plasma can be manipulated by changing the target morphology which is a porous low-density tin oxide (Sn O2) structure. The fundamental light of a Nd-YAG laser was irradiated on the target with laser intensity of ∼ 1011 W cm2 and pulse duration of 10 ns. The nanostructure and density of the targets were tuned by a combination of colloidal polymer template and sol-gel processes [Gu, Nagai, Norimatsu, Fujioka, Nishimura, Nishihara, Miyanaga, and Izawa, Chem. Mater. 17, 1115 (2005)], which has a merit in large-scale preparation. When the target has an open cell nanostructure, the EUV emission directed predominantly along target normal, while a closed cell target exhibited divergent emission. The angular distribution may be affected by the orientation of the microstructured initial target, and this phenomenon can be applied to wavefront control of EUV emission. © 2006 American Institute of Physics.Embargo Period 12 month

    Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory

    No full text
    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory

    Fast Generation of Functional Subtype Astrocytes from Human Pluripotent Stem Cells

    No full text
    Summary: Differentiation of astrocytes from human pluripotent stem cells (hPSCs) is a tedious and variable process. This hampers the study of hPSC-generated astrocytes in disease processes and drug development. By using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs, we developed a method to efficiently generate astrocytes in 4–7 weeks. The astrocytic identity of the induced cells was verified by their characteristic molecular and functional properties as well as after transplantation. Furthermore, we developed a strategy to generate region-specific astrocyte subtypes by combining differentiation of regional progenitors and transgenic induction of astrocytes. This simple and efficient method offers a new opportunity to study the fundamental biology of human astrocytes and their roles in disease processes. : In this article, Zhang and colleagues show that functional and subtype-specific astrocytes can be fast generated from hPSCs by using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs. This simple and efficient method offers the opportunity to study the fundamental biology of human astrocytes and their roles in disease processes. Keywords: fast differentiation from hPSCs, NFIA, SOX9, fast astrocyte differentiation, functional astrocytes, transplantable astrocytes, subtype astrocytes, CRISPR/Cas9 induced differentiation, human astrocytes, engineering hPSC
    corecore