7 research outputs found

    Estimation of sex and age of "virtual skeletons”-a feasibility study

    Get PDF
    This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitu

    Dating human skeletal remains using 90Sr and 210Pb: case studies. [Dating human skeletal remains using Sr-90 and Pb-210: Case studies]

    Get PDF
    In legal medicine, the post mortem interval (PMI) of interest covers the last 50 years. When only human skeletal remains are found, determining the PMI currently relies mostly on the experience of the forensic anthropologist, with few techniques available to help. Recently, several radiometric methods have been proposed to reveal PMI. For instance, (14)C and (90)Sr bomb pulse dating covers the last 60 years and give reliable PMI when teeth or bones are available. (232)Th series dating has also been proposed but requires a large amount of bones. In addition, (210)Pb dating is promising but is submitted to diagenesis and individual habits like smoking that must be handled carefully. Here we determine PMI on 29 cases of forensic interest using (90)Sr bomb pulse. In 12 cases, (210)Pb dating was added to narrow the PMI interval. In addition, anthropological investigations were carried out on 15 cases to confront anthropological expertise to the radiometric method. Results show that 10 of the 29 cases can be discarded as having no forensic interest (PMI>50 years) based only on the (90)Sr bomb pulse dating. For 10 other cases, the additional (210)Pb dating restricts the PMI uncertainty to a few years. In 15 cases, anthropological investigations corroborate the radiometric PMI. This study also shows that diagenesis and inter-individual difference in radionuclide uptake represent the main sources of uncertainty in the PMI determination using radiometric methods

    Virtual anthropology : the forensic approach

    No full text
    MDCT-bone imaging is a recent and very specific research field in forensic anthropology. Its potential derives from daily routine post mortem MDCT that delivers an invaluable collection of permanent skeletal data, ante-mortem information as well as the possibility of non-invasive investigations. These digital data can be easily stored, examined and shared. The aim of the thesis was to understand how virtual objects are produced and to identify potential sources of error. We evaluated conventional morphoscopic scoring systems of age and sex estimation methods as well as linear distance measurements using real and 3D-volume rendered bones. The results demonstrated that acquisition parameters have influence on the quality of bone reconstructions. Moreover, we could show that the application of conventional anthropological methods is possible, however, technical restrictions still must be solved

    CT-scan vs. 3D surface scanning of a skull: first considerations regarding reproducibility issues

    Get PDF
    Three-dimensional surface scanning (3DSS) and multi-detector computed tomography (MDCT) are two techniques that are used in legal medicine for digitalizing objects, a body or body parts such as bones. While these techniques are more and more commonly employed, surprisingly little information is known about the quality rendering of digitalized three-dimensional (3D) models provided by each of them. This paper presents findings related to the measurement precision of 3D models obtained through observation of a study case, where a fractured skull reconstructed by an anthropologist was digitalized using both post-mortem imaging methods. Computed tomography (CT) scans were performed using an 8-row MDCT unit with two different slice thicknesses. The variability of 3D CT models superimposition allowed to assess the reproducibility and robustness of this digitalization technique. Furthermore, two 3D surface scans were done using a professional high resolution 3D digitizer. The comparison of 3D CT-scans with 3D surface scans by superimposition demonstrated several regions with significant differences in topology (average difference between +1.45 and −1.22 mm). When comparing the reproducibility between these two digitalizing techniques, it appeared that MDCT 3D models led in general to greater variability for measurement precision between scanned surfaces. Also, the reproducibility was better achieved with the 3D surface digitizer, showing 3D models with fewer and less pronounced differences (from +0.32 to −0.31 mm). These experiments suggest that MDCT provides less reproducible body models than 3D surface scanning. But further studies must be undertaken in order to corroborate this first impression, and possibly explain the reason for these findings

    Estimation of sex and age of "virtual skeletons"--a feasibility study.

    Get PDF
    This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitum
    corecore