35 research outputs found

    First detection of a colistin-resistant Klebsiella aerogenes isolate from a critically ill patient with septic shock in Bulgaria

    Get PDF
    Colistin is considered as the last-line antibiotic for the treatment of infections caused by extensively drug-resistant Gram-negative pathogens belonging to the ESKAPE (Enterococcus faecium, Staphylo-coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enter-obacter species) group. The present study aimed to explore the colistin resistance mechanisms of a Klebsiella aerogenes (formerly Enterobacter aerogenes) isolate (Kae1177-1bg) obtained from a Bulgarian critically ill patient with septic shock in 2020. Antimicrobial susceptibility testing and whole-genome sequencing using DNA nanoball technology were performed. The resulting read pairs were used for draft genome assembly, MLST analysis and mutation screening in the pmrA/B, phoP/Q, and mgrB genes. Kae1177-1bg demonstrated high-level resistance to colistin, resistance to 3rd generation cepha-losporins and susceptibility to all other antibiotics tested. In our strain a CMY-2-type class C cepha-losporinase was the only beta-lactamase identified. No mobile colistin resistance (mcr) genes were detected. A total of three missense variants in the genes for the two-component PmrA/PmrB system were identified. Two of them were located in the pmrB (pR57K and pN275K) and one in the pmrA gene (pL162M). The pN275K variant emerged as the most likely cause for colistin resistance because it affected a highly conservative position and was the only nonconservative amino acid substitution. In conclusion, to the best of our knowledge, this is the first documented clinical case of a high-level colistin-resistant K. aerogenes in Bulgaria and the first identification of the nonconservative amino acid substitution pN275K worldwide. Colistin-resistant Gram-negative pathogens of ESKAPE group are serious threat to public health and should be subjected to infection control stewardship practices

    Molecular epidemiology, virulence and antimicrobial resistance of Bulgarian methicillin resistant Staphylococcus aureus isolates

    Get PDF
    Background: Severe infections of virulent methicillin-resistant Staphylococcus aureus (MRSA) are a serious health problem. The present study aimed to investigate clonal spread, virulence and antimi-crobial resistance rates of Bulgarian MRSA isolates in 2016-2020. Methods: Molecular identification and mecA gene detection were performed with PCR. Clonal relatedness was evaluated by RAPD PCR and MLST. MRSA epidemiology, virulence and resistance patterns were investigated by PCR. Results: All 27 isolates were identified as S. aureus and were mecA positive, and all were susceptible to linezolid, tigecycline and vancomycin. The toxin genes hlg (in 92.6% of isolates), seb (77.8%), sei (77.8%), seh (59.3%), sej (55.6%), and seg (48.1%), were frequently found among the isolates. Epidemiological typing by RAPD identified 4 clones (16 isolates) and 11 were with a unique profile. MLST analysis of the same MRSA isolates showed five MLST clonal complexes and 11 ST types, including CC5 (33.3%) (ST5, ST221, ST4776), CC8 (22.2%) (ST8, ST239, ST72), CC15 (ST582), CC22 (14.8%) (ST217, ST5417), CC30 (ST30) CC398 (ST398), and CC59 (ST59). The isolates from CC5 showed higher virulence po-tential and almost all were macrolide resistant (ermB or ermC positive). CC8 isolates showed higher level of resistance. Conclusion: To the best of our knowledge, this study is the first describing the clonal spreading of Bulgarian MRSA and the association with their virulence and resistance determinants. Monitoring of MRSA epidemiology, resistance and virulence profile can lead to better prevention and faster therapeutic choice in cases of severe infections

    Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study

    Full text link

    Genotypic and phenotypic insights into virulence factors of nosocomial Stenotrophomonas maltophilia isolates collected in Bulgaria (2011-2022)

    No full text
    The present study aimed to explore the virulence characteristics in 221 Bulgarian nosocomial Steno-trophomonas maltophilia isolates (2011-2022) via screening for the presence of virulence genes, their mutational variability, and the corresponding enzyme activity. PCR amplification, enzymatic assays, whole-genome sequencing (WGS), and biofilm quantification on a polystyrene plate were performed. The incidence of virulence determinants was as follows: stmPr1 (encoding for the major extracellular protease StmPr1) 87.3%, stmPr2 (minor extracellular protease StmPr2) 99.1%, Smlt3773 locus (outer membrane esterase) 98.2%, plcN1 (non-hemolytic phospholipase C) 99.1%, and smf-1 (type-1 fimbriae, biofilm-related gene) 96.4%. The 1621-bp allele of stmPr1 was most frequently found (61.1%), followed by the combined allelic variant (17.6%), stmPr1-negative genotype (12.7%), and 868-bp allele (8.6%). Protease, esterase, and lecithinase activity was observed in 95%, 98.2%, and 17.2% of the isolates, respectively. The WGS-subjected isolates (n = 9) formed two groups. Five isolates possessed only the 1621-bp variant of stmPr1, higher biofilm formation ability (Optical Density at lambda = 550 nm (OD550): 1.253-1.789), as well as a low number of mutations in the protease genes and smf-1. Three other isolates had only the 868-bp variant, weaker biofilm production (OD550: 0.788-1.108), and higher number of mutations within these genes. The only weak biofilm producer (OD550 = 0.177) had no stmPr1 alleles. In conclusion, the similar PCR detection rates did not allow differentiation of the isolates. In contrast, WGS permitted stmPr1 al-leles-based differentiation. To the best of our knowledge, this is the first Bulgarian study presenting genotypic and phenotypic insights into virulence factors of S. maltophilia isolates
    corecore