118 research outputs found

    Changing perspectives on autism: Overlapping contributions of evolutionary psychiatry and the neurodiversity movement

    Get PDF
    Perspectives on autism and psychiatric conditions are affected by a mix of scientific and social influences. Evolutionary psychiatry (EP) and the neurodiversity movement are emerging paradigms that reflect these distinct influences, with the former grounded in scientific theory and the latter driven by political and social principles. Despite their separate foundations, there is a significant overlap between EP and neurodiversity that has not been explored. Specifically, both paradigms reframe disorders as natural cognitive differences rather than disease; expand the concept of "normal" beyond that implied in modern psychiatry; focus on relative strengths; recognize that modern environments disadvantage certain individuals to cause functional impairment; emphasize cognitive variation being socially accommodated and integrated rather than treated or cured; and can help reduce stigmatization. However, in other ways, they are distinct and sometimes in conflict. EP emphasizes scientific explanation, defines "dysfunction" in objective terms, and differentiates heterogenous cases based on underlying causes (e.g. autism due to de novo genetic mutations). The neurodiversity movement emphasizes social action, removes barriers to inclusion, promotes inclusive language, and allows unrestricted identification as neurodivergent. By comparing and contrasting these two approaches, we find that EP can, to some extent, support the goals of neurodiversity. In particular, EP perspectives could be convincing to groups more responsive to scientific evidence and help achieve a middle ground between neurodiversity advocates and critics of the movement

    Recognition of lightning-induced trauma to the skeleton: a forensic taphonomic study

    Get PDF
    Lightning related deaths can be hard to recognize in most circumstances, unless explicitly looked for, and impossible when the remains are fully skeletonized. There is a crucial need for this for forensic authorities in South Africa, where there is a high incidence of lightning deaths and a high rate of recovery of unidentified bodies in the skeletonized state. The effects of a 15 kA, 8/20 I-Ls impulse current applied to a series of pig femurs was investigated as well as a comparison with a skeletal element from a giraffe struck by lightning. A distinct pattern of traumatization was observed and is described in detail. Further analysis and comparison to human results should be carried out and a method for accurately identifying lightning related fatalities should be created

    Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources

    Get PDF
    Explaining the processes underlying the emergence of monument construction is a major theme in contemporary anthropological archaeology, and recent studies have employed spatially-explicit modeling to explain these patterns. Rapa Nui (Easter Island, Chile) is famous for its elaborate ritual architecture, particularly numerous monumental platforms (ahu) and statuary (moai). To date, however, we lack explicit modeling to explain spatial and temporal aspects of monument construction. Here, we use spatially-explicit point-process modeling to explore the potential relations between ahu construction locations and subsis- tence resources, namely, rock mulch agricultural gardens, marine resources, and freshwa- ter sources—the three most critical resources on Rapa Nui. Through these analyses, we demonstrate the central importance of coastal freshwater seeps for precontact populations. Our results suggest that ahu locations are most parsimoniously explained by distance from freshwater sources, in particular coastal seeps, with important implications for community formation and inter-community competition in precontact times

    Evaluation of sensitivity to endocrine herapy index (SET2,3) for response to neoadjuvant endocrine therapy and longer-term breast cancer patient outcomes (Alliance Z1031)

    Get PDF
    PURPOSE: To evaluate prediction of response and event-free survival (EFS) following neoadjuvant endocrine therapy by SET2,3 index of nonproliferation gene expression related to estrogen and progesterone receptors adjusted for baseline prognosis. EXPERIMENTAL DESIGN: A correlative study was conducted of SET2,3 measured from gene expression profiles of diagnostic tumor (Agilent microarrays) in 379 women with cStage II-III breast cancer from the American College of Surgeons Oncology Group Z1031 neoadjuvant aromatase inhibitor trial SET2,3 was dichotomized using the previously published cutoff. Fisher exact test was used to assess the association between SET2,3 and low proliferation at week 2-4 [Ki67 ≤ 10% or complete cell-cycle arrest (CCCA; Ki67 ≤ 2.7%)] and PEPI-0 rate in cohort B, and the association between SET2,3 and ypStage 0/I in all patients. Cox models were used to assess EFS with respect to SET2,3 excluding cohort B patients who switched to chemotherapy. RESULTS: Patients with high SET2,3 had higher rate of pharmacodynamic response than patients with low SET2,3 (Ki67 ≤ 10% in 88.2% vs. 56.9%, P \u3c 0.0001; CCCA in 50.0% vs. 26.2%, P = 0.0054), but rate of ypStage 0/I (24.0% vs. 20.4%, P = 0.4580) or PEPI = 0 (28.4% vs. 20.6%, P = 0.3419) was not different. Patients with high SET2,3 had longer EFS than patients with low SET2,3 (HR, 0.52, 95% confidence interval: 0.34-0.80; P = 0.0026). CONCLUSIONS: This exploratory analysis of Z1031 data demonstrated a higher rate of pharmacodynamic suppression of proliferation and longer EFS in high SET2,3 disease relative to low SET2,3 disease. The ypStage 0/I rate and PEPI = 0 rate were similar with respect to SET2,3

    Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Get PDF
    BACKGROUND:Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3)(-))(n)) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY:The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4)(3-)) concentration while permitting the accumulation of a high total PO(4)(3-) concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO(4)(3-) and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4',6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation. CONCLUSIONS/SIGNIFICANCE:We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled

    Harnessing Thor's Hammer: Experimentally induced lightning trauma to human bone by high impulse current

    Get PDF
    Lightning fatality identification relies primarily on soft tissue traumatic pattern recognition, prohibiting cause of death identification in cases of full skeletonisation. This study explores the effects of high impulse currents on human bone, simulating lightning-level intensities and characterising electrically induced micro-trauma through conventional thin-section histology and micro-focus X-ray computed tomography (μXCT). An experimental system for high impulse current application was applied to bone extracted from donated cadaveric lower limbs (n = 22). μXCT was undertaken prior to and after current application. Histological sections were subsequently undertaken. μXCT poorly resolved micro-trauma compared to conventional histology which allowed for identification and classification of lightning-specific patterns of micro-trauma. Statistical analyses demonstrated correlation between current intensity, extent and damage typology suggesting a multifaceted mechanism of trauma propagation - a combination of electrically, thermally and pressure induced alterations. This study gives an overview of high impulse current trauma to human bone, providing expanded definitions of associated micro-trauma

    Clinical care of pregnant and postpartum women with COVID-19: Living recommendations from the National COVID-19 Clinical Evidence Taskforce

    Get PDF
    To date, 18 living recommendations for the clinical care of pregnant and postpartum women with COVID-19 have been issued by the National COVID-19 Clinical Evidence Taskforce. This includes recommendations on mode of birth, delayed umbilical cord clamping, skin-to-skin contact, breastfeeding, rooming-in, antenatal corticosteroids, angiotensin-converting enzyme inhibitors, disease-modifying treatments (including dexamethasone, remdesivir and hydroxychloroquine), venous thromboembolism prophylaxis and advanced respiratory support interventions (prone positioning and extracorporeal membrane oxygenation). Through continuous evidence surveillance, these living recommendations are updated in near real-time to ensure clinicians in Australia have reliable, evidence-based guidelines for clinical decision-making. Please visit https://covid19evidence.net.au/ for the latest recommendation updates

    Posttranslational modification of CENP-A influences the conformation of centromeric chromatin

    Get PDF
    Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere
    • …
    corecore