375 research outputs found

    The host galaxy of GRB010222: The strongest damped Lyman-alpha system known

    Get PDF
    Analysis of the absorption lines in the afterglow spectrum of the gamma-ray burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is the strongest damped Lyman-alpha (DLA) system known, having a very low metallicity and modest dust content. This conclusion is based on the detection of the red wing of Lyman-alpha plus a comparison of the equivalent widths of ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2) 10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that the dust content in our line of sight through the galaxy is low. This could be due to either dust destruction by the ultraviolet emission of the afterglow or to an initial dust composition different to that of the diffuse interstellar material, or a combination of both.Comment: Submitted to MNRAS 12 page

    SCUBA sub-millimeter observations of gamma-ray bursters. I. GRB 970508, 971214, 980326, 980329, 980519, 980703

    Get PDF
    We discuss the first results of our ongoing program of Target of Opportunity observations of gamma-ray bursts (GRBs) using the SCUBA instrument on the James Clerk Maxwell Telescope. We present the results for GRB 970508, 971214, 980326, 980329, 980519, and 980703. Our most important result to date is the detection of a fading counterpart to GRB 980329 at 850 microns. Although it proved to be difficult to find the infrared counterpart to this burst, the sub-millimeter flux was relatively bright. This indicates that intrinsically the brightness of this counterpart was very similar to GRB 970508. The radio through sub-millimeter spectrum of GRB 980329 is well fit by a power law with index alpha = +0.9. However, we cannot exclude a nu^(1/3) power law attenuated by synchrotron self-absorption. An alpha = +1 VLA-SCUBA power law spectrum is definitely ruled out for GRB 980703, and possibly also for GRB 980519. We cannot rule out that part of the sub-millimeter flux from GRB 980329 comes from a dusty star-forming galaxy at high redshift, such as the ones recently discovered by SCUBA. Any quiescent dust contribution will be much larger at sub-millimeter than at radio wavelengths. Both a high redshift and large dust extinction would help explain the reddening of the counterpart to GRB 980329, and a redshift of z = 5 has been suggested. The large intensity of this burst might then indicate that beaming is important.Comment: 6 pages, 3 figures, submitted to Astronomy and Astrophysic

    Early GRB Optical and Infrared Afterglow Observations with the 2-m Robotic Liverpool Telescope

    Get PDF
    We present the first optical observations of a Gamma Ray Burst (GRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations.Comment: 4 pages, 1 figure, accepted for publication in Il nuovo cimento (4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004

    The optical/near-IR spectral energy distribution of the GRB 000210 host galaxy

    Full text link
    We report on UBVRIZJsHKs-band photometry of the dark GRB 000210 host galaxy. Fitting a grid of spectral templates to its Spectral Energy Distribution (SED), we derived a photometric redshift (z=0.842\+0.0540.042) which is in excellent agreement with the spectroscopic one (z=0.8463+/-0.0002; Piro et al. 2002). The best fit to the SED is obtained with a blue starburst template with an age of 0.181\+0.0370.026 Gyr. We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 4 pages, 1 figure, contribution to the Rome 2002 GRB worksho

    A trio of new Local Group galaxies with extreme properties

    Full text link
    We report on the discovery of three new dwarf galaxies in the Local Group. These galaxies are found in new CFHT/MegaPrime g,i imaging of the south-western quadrant of M31, extending our extant survey area to include the majority of the southern hemisphere of M31's halo out to 150 kpc. All these galaxies have stellar populations which appear typical of dwarf spheroidal (dSph) systems. The first of these galaxies, Andromeda XVIII, is the most distant Local Group dwarf discovered in recent years, at ~1.4 Mpc from the Milky Way (~ 600 kpc from M31). The second galaxy, Andromeda XIX, a satellite of M31, is the most extended dwarf galaxy known in the Local Group, with a half-light radius of r_h ~ 1.7 kpc. This is approximately an order of magnitude larger than the typical half-light radius of many Milky Way dSphs, and reinforces the difference in scale sizes seen between the Milky Way and M31 dSphs (such that the M31 dwarfs are generally more extended than their Milky Way counterparts). The third galaxy, Andromeda XX, is one of the faintest galaxies so far discovered in the vicinity of M31, with an absolute magnitude of order M_V ~ -6.3. Andromeda XVIII, XIX and XX highlight different aspects of, and raise important questions regarding, the formation and evolution of galaxies at the extreme faint-end of the luminosity function. These findings indicate that we have not yet sampled the full parameter space occupied by dwarf galaxies, although this is an essential pre-requisite for successfully and consistently linking these systems to the predicted cosmological dark matter sub-structure.Comment: 32 pages, 7 figures (ApJ preprint format). Accepted for publication in Ap

    Spectroscopy of the optical afterglow of GRB 021004: Origin of the blue-shifted hydrogen lines

    Get PDF
    We present spectra of the afterglow of GRB 021004 taken with WHT ISIS and VLT FORS1 at three epochs spanning 0.49–6.62 days after the burst. Alongside absorption lines from the host galaxy, we identify absorption in HI, SiIV and CIV with blueshifts of up to 2800 km s−1 from the explosion centre which we assume originates close to the progenitor. We investigate the origin of the outflowing material and evaluate various possible progenitor models, in particular a binary progenitor consisting of a Wolf-Rayet star and hydrogen-rich companion

    The structure of star clusters in the outer halo of M31

    Get PDF
    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ∼20 parsec core radii and ∼100 parsec photometric tidal radii, or by Sérsic profiles of index ∼1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ∼2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kp
    • …
    corecore