449 research outputs found

    Polymerase chain reaction for the direct detection of Brucella spp. in milk and cheese.

    Get PDF
    A polymerase chain reaction test was developed to detect Brucella spp. directly in milk and cheese and optimized using primers for the BSCP-31 gene. A total of 46 cheese samples produced with sheep and goats milk were assayed, and Brucella spp. was detected in 46% of them, especially in cheese made from sheep milk. This method is of remarkable epidemiologic interest because it is an indirect test indicating the sanitary quality of milk used in dairy industries. The method showed good sensitivity and specificity. It is faster and less expensive than the conventional bacteriological assays

    Soluble CD40L and cardiovascular risk in asymptomatic low-grade carotid stenosis

    Get PDF
    Background and Purpose-We investigated whether soluble CD40L (sCD40L) may predict the risk of cardiovascular (CV) events in patients with asymptomatic carotid plaques. Methods-Forty-two patients with asymptomatic low-grade carotid stenosis (ALCS) and 21 controls without any carotid stenosis were enrolled. All subjects had at least a major cardiovascular risk factor (CRF). Plasma levels of C-reactive protein (CRP), IL-6, and sCD40L were measured. Subjects were reviewed every 12 months (median follow-up, 8 years). Results-ALCS patients had higher (P<0.0001) CRP, IL-6, and sCD40L than controls. Fourteen patients experienced a CV event. Cox regression analysis showed that only high sCD40L levels (P=0.003) independently predicted cardiovascular risk. Conclusions-High levels of sCD40L may predict the risk of CV events in ALCS

    Survival of a sars-cov-2 surrogate on flow-pack polyethylene and polystyrene food trays at refrigeration and room temperature conditions

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the current pandemic referred to as coronavirus disease 2019, is spread by direct and indirect transmission between humans, including contact with contaminated surfaces, frozen food, packaging materials, and storage environments. Food contamination may occur in the “farm-to-table” lifecycle through contact with food handlers and environments. In the present study, the survival of a SARS-CoV-2 surrogate (feline coronavirus (FCoV)) at room temperature and refrigeration conditions for different time intervals on two types packaging widely used packaging, namely flow-pack polyethylene and polystyrene food trays, was investigated. FCoV was stable on the flow-pack polyethylene for 48 h and 120 h at room temperature and 4◦C, respectively, while it persisted on polystyrene food trays for 36 h at room temperature and for 120 h at +4◦C. The results of our study highlight the possible implications of food packaging in the spread of SARS-CoV-2 during the current pandemic

    Giant Barocaloric Effect at the Spin Crossover Transition of a Molecular Crystal

    Get PDF
    The first experimental evidence for a giant, conventional barocaloric effect (BCE) associated with a pressure‐driven spin crossover transition near room temperature is provided. Magnetometry, neutron scattering, and calorimetry are used to explore the pressure dependence of the SCO phase transition in polycrystalline samples of protonated and partially deuterated [FeL2][BF4]2 [L = 2,6‐di(pyrazol‐1‐yl)pyridine] at applied pressures of up to 120 MPa (1200 bar). The data indicate that, for a pressure change of only 0–300 bar (0–30 MPa), an adiabatic temperature change of 3 K is observed at 262 K or 257 K in the protonated and deuterated materials, respectively. This BCE is equivalent to the magnetocaloric effect (MCE) observed in gadolinium in a magnetic field change of 0–1 Tesla. The work confirms recent predictions that giant, conventional BCEs will be found in a wide range of SCO compounds

    COMPARISON OF TWO METHODS FOR THE DETECTION OF LISTERIA MONOCYTOGENES

    Get PDF
    The aim of this study was to compare the performance of the conventional methods for detection of Listeria monocytogenes in food using media Oxford and ALOA (Agar Listeria acc. to Ottaviani & Agosti) in according to the ISO 11290-1 to a new chromogenic medium "CHROMagar Listeria" standardized in 2005 AFNOR ( CHR – 21/1-12/01). A total of 40 pre-packed ready-to-eat food samples were examined. Using two methods six samples were found positive for Listeria monocytogenes but the medium "CHROMagar Listeria" was more selective in comparison with the others. In conclusion this study has demonstrated that isolation medium able to target specifically the detection of L. monocytogenes such as "CHROMagar Listeria" is highly recommendable because of that detection time is significantly reduced and the analysis cost is less expensive

    ANKRd44 gene silencing: A putative role in trastuzumab resistance in HER2-like breast cancer

    Get PDF
    Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance

    Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor α-APA R 95845 at 2.8 å resolution

    Get PDF
    AbstractBackground: HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that copies the RNA genome of HIV-1 into DNA. It is a heterodimer composed of a 66 kDa (p66) and a 51 kDa (p51) subunit. HIV-1 RT is a crucial target for structure-based drug design, and potent inhibitors have been identified, whose efficacy, however, is limited by drug resistance.Results The crystal structure of HIV-1 RT in complex with the non-nucleoside inhibitor α-anilinophenylacetamide (α-APA) R 95845 has been determined at 2.8 å resolution. The inhibitor binds in a hydrophobic pocket near the polymerase active site. The pocket contains five aromatic amino acid residues and the interactions of the side chains of these residues with the aromatic rings of non-nucleoside inhibitors appear to be important for inhibitor binding. Most of the amino acid residues where mutations have been correlated with high levels of resistance to non-nucleoside inhibitors of HIV-1 RT are located close to α-APA. The overall fold of HIV-1 RT in complex with α-APA is similar to that found when in complex with nevirapine, another non-nucleoside inhibitor, but there are significant conformational changes relative to an HIV-1 RT/DNA/Fab complex.Conclusion The non-nucleoside inhibitor-binding pocket has a flexible structure whose mobility may be required for effective polymerization, and may be part of a hinge that permits relative movements of two subdomains of the p66 subunit denoted the ‘palm’ and ‘thumb’. An understanding of the structure of the inhibitor-binding pocket, of the interactions between HIV-1 RT and α-APA, and of the locations of mutations that confer resistance to inhibitors provides a basis for structure-based design of chemotherapeutic agents for the treatment of AIDS

    ANKRd44 gene silencing: a putative role in trastuzumab resistance in HER2-like breast cancer

    Get PDF
    Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance
    corecore