251 research outputs found

    Relation between substorm characteristics and rapid temporal variations of the ground magnetic field

    Get PDF
    Auroral substorms are one of the major causes of large geomagnetically induced currents (GIC) in technological systems. This study deals with different phases of the auroral substorm concerning their severity from the GIC viewpoint. Our database consists of 833 substorms observed by the IMAGE magnetometer network in 1997 (around sunspot minimum) and 1999 (rising phase of the sunspot cycle), divided into two classes according to the <i>D<sub>st</sub></i> index: non-storm (<i>D<sub>st</sub></i>>-40 nT, 696 events) and storm-time ones (<i>D<sub>st</sub></i><-40 nT, 137 events). The key quantity concerning GIC is the time derivative of the horizontal magnetic field vector (<i>d</i><i><b>H</b></i>/<i>dt</i>) whose largest values during substorms occur most probably at about 5 min after the onset at stations with CGM latitude less than 72 deg. When looking at the median time of the occurrence of the maximum <i>d</i><i><b>H</b></i>/<i>dt</i> after the expansion onset, it increases as a function of latitude from about 15 min at CGM lat=56 deg to about 45 min at CGM lat=75 deg for non-storm substorms. For storm-time events, these times are about 5 min longer. Based on calculated ionospheric equivalent currents, large <i>d</i><i><b>H</b></i>/<i>dt</i> occur mostly during the substorm onset when the amplitude of the westward electrojet increases rapidly

    Auroral electrojets during deep solar minimum at the end of solar cycle 23

    Get PDF
    We investigate the auroral electrojet activity during the deep minimum at the end of solar cycle 23 (2008–2009) by comparing data from the IMAGE magnetometer chain, auroral observations in Fennoscandia and Svalbard, and solar wind and interplanetary magnetic field (IMF) observations from the OMNI database from that period with those recorded one solar cycle earlier. We examine the eastward and westward electrojets and the midnight sector separately. The electrojets during 2008–2009 were found to be weaker and at more poleward latitudes than during other times, but when similar driving solar wind and IMF conditions are compared, the behavior in the morning and evening sectors during 2008–2009 was similar to other periods. On the other hand, the midnight sector shows distinct behavior during 2008–2009: for similar driving conditions, the electrojets resided at further poleward latitudes and on average were weaker than during other periods. Furthermore, the substorm occurrence frequency seemed to saturate to a minimum level for very low levels of driving during 2009. This analysis suggests that the solar wind coupling to the ionosphere during 2008–2009 was similar to other periods but that the magnetosphere-ionosphere coupling has features that are unique to this period of very low solar activity.Peer reviewe

    Early auroral photography and observations at the Sodankylä Geophysical Observatory in Finland, 1927–1929

    Get PDF
    In Finland, auroral photography started in 1927 at the Sodankylä Geophysical Observatory (SGO) with the initiative of famous Norwegian scientist Carl Störmer. In less than 2 years about 600 photographs of auroras were taken at Sodankylä. Some of the images were obtained simultaneously at auxiliary stations for parallactic determinations of the height of auroral arcs. Most of the pictures of auroras were lost in the destruction of the SGO during the war in 1944. About 200 images were rescued in the archive of the Finnish Meteorological Institute, where they were recently found. These pictures of auroras are the first ones taken in Finland. These photographs are now digitized and archived in the SGO. During the polar year period 1932–1933, auroral photography was mostly discontinued, but visual observations of auroras were made instead at several sites in Lapland. The main sources of information about the history of auroral images are handwritten notebooks of Eyvind Sucksdorff for 1927–1929. They contain relevant data for each photograph (date, exposure time, orientation of camera etc.). In Appendix A there are tables showing the dates of rescued auroral photographs as well as the lost ones. In Finland, Sucksdorff's contribution to studies of auroras was a pioneering effort with minimal resources. Regular photographing of auroras started in Finland during the International Geophysical Year (IGY) 1957–1958.</p

    Seasonal and Diurnal Variation of Geomagnetic Activity: Revised \u3cem\u3eDst\u3c/em\u3e Versus External Drivers

    Get PDF
    Daily and seasonal variability of long time series of magnetometer data from Dst stations is examined. Each station separately shows a local minimum of horizontal magnetic component near 18 local time (LT) and weakest activity near 06 LT. The stations were found to have different baselines such that the average levels of activity differed by about 10 nT. This effect was corrected for by introducing a new “base method” for the elimination of the secular variation. This changed the seasonal variability of the Dst index by about 3 nT. The hemispheric differences between the annual variation (larger activity during local winter and autumn solstice) were demonstrated and eliminated from the Dst index by addition of two Southern Hemisphere stations to a new index termed Dst6. Three external drivers of geomagnetic activity were considered: the heliographic latitude, the equinoctial effect, and the Russell–McPherron effect. Using the newly created Dst6 index, it is demonstrated that these three effects account for only about 50% of the daily and seasonal variability of the index. It is not clear what drives the other 50% of the daily and seasonal variability, but it is suggested that the station distribution may play a role

    Magnetosheath control of solar wind-magnetosphere coupling efficiency

    Get PDF
    We examine the role of the magnetosheath in solar wind-magnetosphere-ionosphere coupling using the Time History of Events and Macroscale Interactions during Substorms plasma and magnetic field observations in the magnetosheath together with OMNI solar wind data and auroral electrojet recordings from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer chain. We demonstrate that the electric field and Poynting flux reaching the magnetopause are not linear functions of the electric field and Poynting flux observed in the solar wind: the electric field and Poynting flux at the magnetopause during higher driving conditions are lower than those predicted from a linear function. We also show that the Poynting flux normal to the magnetopause is linearly correlated with the directly driven part of the auroral electrojets in the ionosphere. This indicates that the energy entering the magnetosphere in the form of the Poynting flux is directly responsible for driving the electrojets. Furthermore, we argue that the polar cap potential saturation discussed in the literature is associated with the way solar wind plasma gets processed during the bow shock crossing and motion within the magnetosheath.Peer reviewe

    Auroral electrojets variations caused by recurrent high-speed solar wind streams during the extreme solar minimum of 2008

    Get PDF
    We present a small statistical data set, where we investigate energy conversion at the magnetopause using Cluster measurements of magnetopause crossings. The Cluster observations of magnetic field, plasma velocity, current density and magnetopause orientation are needed to infer the energy conversion at the magnetopause. These parameters can be inferred either from accurate multispacecraft methods, or by using single-spacecraft methods. Our final aim is a large statistical study, for which only single-spacecraft methods can be applied. The Cluster mission provides an opportunity to examine and validate single-spacecraft methods against the multispacecraft methods. For single-spacecraft methods, we use the Generic Residue Analysis (GRA) and a standard one-dimensional current density method using magnetic field measurements. For multispacecraft methods, we use triangulation (Constant Velocity Approach - CVA) and the curlometer technique. We find that in some cases the single-spacecraft methods yield a different sign for the energy conversion than compared to the multispacecraft methods. These sign ambiguities arise from the orientation of the magnetopause, choosing the interval to be analyzed, large normal current and time offset of the current density inferred from the two methods. By using the Finnish Meteorological Institute global MHD simulation GUMICS-4, we are able to determine which sign is likely to be correct, introducing an opportunity to correct the ambiguous energy conversion values. After correcting the few ambiguous cases, we find that the energy conversion estimated from single-spacecraft methods is generally lower by 70% compared to the multispacecraft methods.Peer reviewe

    Differences in the solar cycle variability of simple and complex active regions during 1996-2018

    Get PDF
    Aims. Our aim is to examine the solar cycle variability of magnetically simple and complex active region. Methods. We studied simple (alpha and beta) and complex (beta gamma and beta gamma delta) active regions based on the Mount Wilson magnetic classification by applying our newly developed daily approach. We analyzed the daily number of the simple active regions (SARs) and compared that to the abundance of the complex active regions (CARs) over the entire solar cycle 23 and cycle 24 until December 2018. Results. We show that CARs evolve differently over the solar cycle from SARs. The time evolution of SARs and CARs on different hemispheres also shows differences, even though on average their latitudinal distributions are shown to be similar. The time evolution of SARs closely follows that of the sunspot number, and their maximum abundance was observed to occur during the early maximum phase, while that of the CARs was seen roughly two years later. We furthermore found that the peak of CARs was reached before the latitudinal width of the activity band starts to decease. Conclusion. Our results suggest that the active region formation process is a competition between the large-scale dynamo (LSD) and the small-scale dynamo (SSD) near the surface, the former varying cyclically and the latter being independent of the solar cycle. During solar maximum, LSD is dominant, giving a preference to SARs, while during the declining phase the relative role of SSD increases. Therefore, a preference for CARs is seen due to the influence of the SSD on the emerging flux.Peer reviewe

    STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Get PDF
    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr. complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.Peer reviewe
    • …
    corecore