3,739 research outputs found
Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation
An infrared absorption spectrometer has been constructed to measure the stable isotopic composition of atmospheric methane samples. The spectrometer employs periodically poled lithium niobate to generate 15 μW of tunable difference-frequency radiation from two near-infrared diode lasers that probe the ν3 rotational-vibrational band of methane at 3.4 μm. To enhance the signal, methane is extracted from 25 l of air by use of a cryogenic chromatographic column and is expanded into the multipass cell for analysis. A measurement precision of 12‰ is demonstrated for both δ13C and δD
Accounting for decarbonisation and reducing capital at risk in the S&P500
This document is the Accepted Manuscript version of the following article: Colin Haslam, Nick Tsitsianis, Glen Lehman, Tord Andersson, and John Malamatenios, ‘Accounting for decarbonisation and reducing capital at risk in the S&P500’, Accounting Forum, Vol. 42 91): 119-129, March 2018. Under embargo until 7 August 2019. The final, definitive version is available online at doi: https://doi.org/10.1016/j.accfor.2018.01.004.This article accounts for carbon emissions in the S&P 500 and explores the extent to which capital is at risk from decarbonising value chains. At a global level it is proving difficult to decouple carbon emissions from GDP growth. Top-down legal and regulatory arrangements envisaged by the Kyoto Protocol are practically redundant given inconsistent political commitment to mitigating global climate change and promoting sustainability. The United Nations Environment Programme (UNEP) and European Commission (EC) are promoting the role of financial markets and financial institutions as drivers of behavioural change mobilising capital allocations to decarbonise corporate activity.Peer reviewe
Intrinsic Coulomb blockade in multi-wall carbon nanotubes
Carbon nanotubes provide a new class of molecular wires that display new and
exciting mesoscopic transport properties. We provide a detailed theoretical
description for transport in multi-wall nanotubes, where both disorder and
strong interactions are important. The interplay of both aspects leads to a
particularly effective intrinsic Coulomb blockade for tunneling. The relation
to recent experiments is discussed.Comment: 13 pages, incl 2 figs, for: Special issue "Transport in Molecular
Wires" in Chemical Physics, ed. by P. Hanggi, M. Ratner, S. Yalirak
dc Josephson Effect in Metallic Single-Walled Carbon Nanotubes
The dc Josephson effect is investigated in a single-walled metallic carbon
nanotube connected to two superconducting leads. In particular, by using the
Luttinger liquid theory, we analyze the effects of the electron-electron
interaction on the supercurrent. We find that in the long junction limit the
strong electronic correlations of the nanotube, together with its peculiar band
structure, induce oscillations in the critical current as a function of the
junction length and/or the nanotube electron filling. These oscillations
represent a signature of the Luttinger liquid physics of the nanotube, for they
are absent if the interaction is vanishing. We show that this effect can be
exploited to reverse the sign of the supercurrent, realizing a tunable
\pi-junction.Comment: 7 pages, 5 figure
Effects of magnetic field and disorder on electronic properties of Carbon Nanotubes
Electronic properties of metallic and semiconducting carbon nanotubes are
investigated in presence of magnetic field perpendicular to the CN-axis, and
disorder introduced through energy site randomness. The magnetic field field is
shown to induce a metal-insulator transition (MIT) in absence of disorder, and
surprisingly disorder does not affect significantly the MIT. These results may
find confirmation through tunneling experimentsComment: 4 pages, 6 figures. Phys. Rev. B (in press
Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors
The influence of defects on electron transport in single-wall carbon nanotube
field effect transistors (CNFETs) is probed by combined scanning gate
microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a
localized field effect at discrete defects along the CNFET length. The
depletion surface potential of individual defects is quantified from the
SGM-imaged radius of the defect as a function of tip bias voltage. This
provides a measure of the Fermi level at the defect with zero tip voltage,
which is as small as 20 meV for the strongest defects. The effect of defects on
transport is probed by SIM as a function of backgate and tip-gate voltage. When
the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a
uniform potential drop along its length, consistent with diffusive transport.
In contrast, when the CNFET is "off", potential steps develop at the position
of depleted defects. Finally, high-resolution imaging of a second set of weak
defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter
Carbon cycle research after Kyoto
Recent progress in research of the global carbon cycle is reviewed and research needs for the immediate future are discussed, in light of the challenge posed to society to come to grips with the problem of man-made climate change. The carbon cycle in the oceans and on the land is reviewed, and how the atmosphere functions to couple them together. Major uncertainties still exist for any projection of the future atmospheric burden of carbon dioxide resulting from postulated emission scenarios of CO2. We present some ideas on how future policies designed to limit emissions or to sequester carbon can possibly be supported by scientific evidence of their effectiveness
Subband population in a single-wall carbon nanotube diode
We observe current rectification in a molecular diode consisting of a
semiconducting single-wall carbon nanotube and an impurity. One half of the
nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a
typical semiconducting nanotube. The other half of the nanotube has the
impurity on it, and its I-V characteristic is that of a diode. Current in the
nanotube diode is carried by holes transported through the molecule's
one-dimensional subbands. At 77 Kelvin we observe a step-wise increase in the
current through the diode as a function of gate voltage, showing that we can
control the number of occupied one-dimensional subbands through electrostatic
doping.Comment: to appear in Physical Review Letters. 4 pages & 3 figure
Zo verkopen gemeenten hun vastgoed
Bijna elke gemeente heeft vastgoed in bezit dat uit de analyse komt rollen als niet-kernvoorraad dat vervolgens verkocht kan worden. Elke gemeente pakt dit op een eigen manier aan. Interessant om verschillende benaderingen de revue te laten passeren om vervolgens te kijken of er ook overeenkomsten zijn
- …
