35 research outputs found

    Measurements of Saharan dust deposition. A simple sampling technique : the pyramidal collecting system

    Get PDF
    The collecting system is presented. It is a simple pyramidal receptacle which records Saharan dust deposition at regional scales on a daily basis. Where as the common air-filter sampling system is usually filled-up due to very high aerosol concentrations, our system is proved to be efficient whatever the conditions. The annual thickness of Saharan dust layer over the whole Cape Verde area is estimated at 70 p. y-'

    Aerosol Remote Sensing

    Get PDF
    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified

    Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    Get PDF
    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects

    Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Get PDF
    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process

    Recent Short Term Global Aerosol Trends over Land and Ocean Dominated by Biomass Burning

    Get PDF
    NASA's MODIS instrument on board the Terra satellite is one of the premier tools to assess aerosol over land and ocean because of its high quality calibration and consistency. We analyze Terra-MODIS's seven year record of aerosol optical depth (AOD) observations to determine whether global aerosol has increased or decreased during this period. This record shows that AOD has decreased over land and increased over ocean. Only the ocean trend is statistically significant and corresponds to an increase in AOD of 0.009, or a 15% increase from background conditions. The strongest increasing trends occur over regions and seasons noted for strong biomass burning. This suggests that biomass burning aerosol dominates the increasing trend over oceans and mitigates the otherwise mostly negative trend over the continents

    Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"

    Get PDF
    A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account

    An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors

    Get PDF
    The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea

    Characterization of Smoke/Dust Episode over West Africa: Comparison of MERRA-2 Modeling with Multiwavelength Mie-Raman Lidar Observations

    Get PDF
    Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke/dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500 m - 4000 m range. The profiles of lidar measured backscattering, extinction coefficients and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The value of modeled and observed aerosol extinction coefficients at both 355 nm and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km(exp -1) with standard deviation of 0.042 km(exp -1). The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15% observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70+/-10) sr. At 532 nm however, the simulated lidar ratio (about 40 sr) is lower than measurements (55+/-8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization

    Estimation de l'effet direct des aérosols à partir de la modélisation et de la télédétection passive

    No full text
    Les aérosols atmosphériques influent sur le bilan radiatif terrestre en diffusant et absorbant le rayonnement incident (effet direct) et en modifiant le cycle de vie et les propriétés radiatives des nuages (effet indirect). Les interactions aérosols anthropiques - nuages - rayonnement constituent un forçage du système dont le signe et l'ordre de grandeur sont mal connus. Cette thèse étudie l'effet direct à partir d'observations satellitaires et de photométrie au sol. Elle aborde également plusieurs aspects de la modélisation des aérosols et de la surface dans les codes de transfert radiatif. Après avoir présenté les aérosols atmosphériques et leur impact climatique, on définit la perturbation des flux radiatifs due à l'effet direct des aérosols. Les outils utilisés par cette thèse sont le code de transfert radiatif Streamer qui, associé à une technique de reconstitution du signal, permet de simuler flux et réflectances, l'instrument satellitaire Polder, qui est multidirectionnel et effectue des mesures polarisées, et le réseau de photomètres Aeronet-Photons. On étudie tout d'abord l'impact sur la perturbation radiative directe des aérosols de deux simplifications souvent utilisées dans les calculs de transfert radiatif. Il est montré, à partir de mesures de la fonction de phase, que négliger la non-sphéricité des aérosols entraîne des erreurs importantes sur la perturbation radiative directe et sur l'inversion de l'épaisseur optique. La prise en compte de la surface océanique par son albédo entraîne également des erreurs par rapport à la prise en compte rigoureuse utilisant la fonction de distribution de la réflectance bidirectionnelle. Pour estimer l'absorption par les aérosols, nous avons associé les inversions de Polder à un jeu d'albédos de diffusion simple issu de l'analyse de mesures Aeronet-Photons. L'algorithme utilisé permet d'identifier l'aérosol présent dans l'atmosphère en se basant sur les propriétés optiques déduites des mesures de Polder et sur la localisation géographique de la scène. Notre estimation de l'absorption en ciel clair est 2,5 Wm-2en moyenne globale sur les huit mois de données Polder. Nous présentons ensuite une méthode originale d'estimation de la perturbation radiative au-dessus des océans et en ciel clair à partir des réflectances de Polder. Grâce à l'utilisation de nombreux modèles d'aérosols, notre algorithme permet de défmir une incertitude. L'application sur les huit mois de mesures de Polder permet d'évaluer la perturbation radiative entre -6,8 et -7,8 Wm-2 en moyenne globale et sur huit mois. Une modification sera apportée à l'algorithme afm de mieux prendre en compte l'effet du vent sur la surface marine. La thèse se termine par une discussion sur l'estimation de la perturbation radiative directe au-dessus des continents, où la prise en compte de la surface est difficile.LILLE1-BU (590092102) / SudocSudocFranceF
    corecore