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 13 

Abstract 14 

Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign 15 

are used to analyze a smoke/dust episode over West Africa on 24-27 December 2015. For the 16 

case considered, the dust layer extended from the ground up to approximately 2000 m while the 17 

elevated smoke layer occurred in the 2500 m – 4000 m range. The profiles of lidar measured 18 

backscattering, extinction coefficients and depolarization ratios are compared with the vertical 19 

distribution of aerosol parameters provided by the Modern-Era Retrospective analysis for 20 

Research and Applications, Version 2 (MERRA-2). The MERRA-2 model simulated the correct 21 

location of the near–surface dust and elevated smoke layers. The value of modeled and observed 22 

aerosol extinction coefficients at both 355 nm and 532 nm are also rather close. In particular, for 23 

the episode reported, the mean value of difference between the measured and modeled extinction 24 

coefficients at 355 nm is 0.01 km-1 with standard deviation of 0.042 km-1. The model predicts 25 

significant concentration of dust particles inside the elevated smoke layer, which is supported by 26 

an increased depolarization ratio of 15% observed in the center of this layer. The modeled at 355 27 

nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70±10) sr. 28 

At 532 nm however, the simulated lidar ratio (about 40 sr) is lower than measurements (55±8 sr). 29 

The results presented demonstrate that the lidar and model data are complimentary and the 30 

synergy of observations and models is a key to improve the aerosols characterization. 31 

https://ntrs.nasa.gov/search.jsp?R=20180004339 2019-08-30T08:50:34+00:00Z
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1. Introduction 3 

Atmospheric aerosols are an important factor influencing the Earth’s radiative budget, 4 

though its impact is still highly uncertain due largely to the complicated mechanisms of aerosol – 5 

cloud interaction. Aerosol particles serve as cloud condensation nuclei and ice-nucleating 6 

particles, providing strong impact on cloud and precipitation formation. However different 7 

aerosol types differ significantly in their ability to initiate drop and ice crystal nucleation. There 8 

is thus a clear need for a better knowledge on vertically resolved optical, physical and chemical 9 

aerosol properties. Lidar is a recognized instrument for vertical profiling of aerosol properties, 10 

and the possibility to invert lidar observations at several wavelengths to aerosol microphysical 11 

properties has been extensively studied both theoretically and experimentally over the two past 12 

decades (e.g. Müller et al., 1999; 2016; Veselovskii et al., 2002; Böckman et al, 2005). These 13 

studies revealed the importance of using Raman or HSRL (high spectral resolution lidar) 14 

systems, which allow independent measurements of aerosol extinction and backscattering 15 

coefficients to be made. At present, the most practical configuration of Raman (HSRL) lidar is 16 

based on a triple wavelength Nd:YAG laser. Such a lidar provides the so called 3�+2� set of 17 

observations, including three backscattering (355 nm, 532 nm, 1064 nm) and two extinction (355 18 

nm, 532 nm) coefficients. 19 

However the problem of inversion of 3�+2� observations is underdetermined 20 

(Chemyakin et al., 2016; Alexandrov and Mishchenko 2017). As a result, instead of a unique 21 

solution, a family of solutions should be considered, leading to an increase in retrieval 22 

uncertainties. Still the estimation of volume density (V) and effective radius (reff) with 23 

uncertainty below 30% is possible, especially when the fine mode in the particle size distribution 24 

(PSD) is predominant (e.g. Veselovskii et al., 2004; Müller et al., 2005; 2016; Pérez-Ramírez et 25 

al., 2013, ). The refractive index (RI) can be also estimated from the measurements, although the 26 

uncertainty of such estimation is significant: for the real part (mR) of RI the uncertainty is 27 

normally about ±0.05 and for the imaginary part (mI) it is about 50% when mI>0.01 (Veselovskii 28 

et al., 2004; Müller et al., 2016). Proposed improvements of inversion schemes were considered 29 

in recent publications (Chemyakin et al., 2014; Kolgotin et al., 2016), still these improvements 30 

are not able to resolve the fundamental issue: the information content of 3�+2� observations is 31 



3 
 

insufficient to support exact solution of the problem and additional information should be used in 1 

retrievals to improve the accuracy of the retrieved products (Veselovskii et al., 2005; Burton et 2 

al., 2016; Kahnert and Andersson, 2017; Alexandrov and Mishchenko 2017).  3 

We should recall also that in the inversion schemes considered, the refractive index is 4 

normally assumed to be spectrally and size independent, which is generally not the case in the 5 

atmosphere. The irregularity of the particles shape can be also a significant error source. 6 

Moreover, the volume density and effective radius obtained from 3�+2� observations are 7 

attributed to the whole size distribution, which is of limited practical use, because of the 8 

importance of characterizing the particle properties separately for the fine and coarse modes. 9 

Considering these issues makes the inverse problem even more underdetermined, emphasizing 10 

the need for additional input information. 11 

One opportunity to get this additional information is by combining the lidar observations 12 

with aerosol transport models (Kahnert and Andersson, 2017). Models provide the vertical 13 

distribution of mass mixing ratios of chemical aerosol components, which can be used as “initial 14 

guess” in the inversion scheme. MERRA-2 offers a unique opportunity to provide such an 15 

“initial guesses” of the vertical structure of aerosol chemical composition. MERRA-2 is 16 

produced with NASA’s global Earth system model, GEOS-5 (Goddard Earth Observing System 17 

version 5) (Gelaro et al 2017) and includes an online coupling with the Goddard Chemistry, 18 

Aerosol, Radiation and Transport model (GOCART), which allows for assimilation of aerosol 19 

optical depth (AOD) from space borne and surface instruments such as MODIS, AVHRR, 20 

MISR, and AERONET (Randles et al. 2017). The fundamental data that MERRA-2 provides are 21 

vertical profiles of the mass mixing ratios of five aerosol components: dust, sea salt, black and 22 

organic carbon, and sulfate aerosols. The main optical parameters related to lidar measurements, 23 

such as aerosol extinction and backscattering coefficients can be calculated basing on these data. 24 

The principal question arising, however, is how well the reanalysis reproduces independent 25 

observations, and thus can provide a realistic initial guess for a lidar inversion scheme. Buchard 26 

et al. (2017) and Randles et al (2017) extensively validated MERRA-2 with independent surface 27 

and aircraft observations of particulate matter (PM2.5) and AOD, as well as space-based 28 

observations of absorption aerosol optical depth and aerosol index. The extinction profiles 29 

derived from airborne HSRL measurements were also compared with modeling, finding 30 

generally good agreement between the observations and MERRA-2.  31 
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For global validation of the aerosol vertical distribution, the modeled profiles of 1 

attenuated backscatter were compared to spaceborne Cloud–Aerosol Lidar with Orthogonal 2 

Polarization (CALIOP) observations (Winker et al., 2009), and a good consistency between 3 

simulations and observations was reported (Nowottnick et al., 2015, Buchard et al., 2017). 4 

Additional opportunities for model validation are provided by ground based multiwavelength 5 

Raman or HSRL systems. Such lidars by their nature have limited spatial coverage but are well 6 

suited for the characterization of the vertical distribution of particle properties at a chosen 7 

location. 8 

In our paper, we consider Raman lidar observations taken during a smoke/dust episode 9 

over West Africa in December 2015 during the SHADOW campaign (Veselovskii et al., 2016), 10 

and compare the vertical profiles of particle parameters with MERRA-2. The simultaneous 11 

presence of dust and smoke layers in the atmosphere provides an opportunity to test the ability of 12 

the model to reproduce the vertical structure of aerosol properties over the observation site. 13 

 14 

2. Measurement setup and data analysis 15 

2.1 Observation site 16 

The observation site is located at the Institute for Research and Development (IRD) 17 

Center, Mbour, Senegal (140N, 170W). Information about the SHADOW (study of SaHAran 18 

Dust Over West Africa) campaign and instruments at the IRD site can be found in the recent 19 

publication by Veselovskii et al. (2016). During the SHADOW campaign data from three lidar 20 

instruments were available:  21 

• Cimel CE-370 micropulse lidar (www.cimel.fr) operated 24 hours per day at 532 nm 22 

allowing real-time monitoring of aerosol and cloud layers. 23 

• Doppler lidar Windcube WLS 100 (www.leosphere.com) provided continuous 24 

monitoring of the wind field in the range from 100 m to 5 km with 50 m range resolution at 1543 25 

nm wavelength. 26 

• Multiwavelength Mie - Raman polarization lidar LILAS (LIlle Lidar AtmosphereS), 27 

allowed simultaneous detection of elastic and Raman backscatter signals and thus provides 28 

3β+2� observations along with depolarization ratio at 532 nm.  29 

LILAS measurements were performed from inside a laboratory building through a 30 

window at an angle of 47 deg with respect to the horizon. Acquiring Raman backscatter at 408 31 
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nm also permits profiling of the water vapor mixing ratio (WVMR) (Whiteman et al., 1992). For 1 

calibration of the water vapor channel, radiosonde launches from Dakar (about 70 km away from 2 

Mbour) were used. The large separation between the lidar and radiosonde locations prevented an 3 

accurate calibration, so the WVMR data were used mainly to monitor the relative change of the 4 

water vapor content. The temporal resolution of the measurements was approximately 3 minutes. 5 

The backscattering coefficients and depolarization ratio were calculated with range resolution 7.5 6 

m (corresponding to a vertical spatial resolution of 5.5.m). The height resolution of the extinction 7 

coefficient measurements varied with height from 50 m (at 1000 m) to 125 m (at 7000 m). The 8 

measurements were performed mainly in the night time. In the day time, the Raman 9 

measurements at 532 nm were possible only up to 2-3 km height, so continuous the night and 10 

day time Raman measurements were performed only for selected episodes. 11 

The particle extinction (�) and backscattering (�) coefficients at 355 nm and 532 nm are 12 

calculated from elastic and Raman backscatter signals, as described in Ansmann et al. (1992). 13 

Backscattering coefficients at 1064 nm (�1064) were calculated by the Klett method (Klett, 14 

1981).  15 

In the data analysis both volume (δv) and particle (δ) depolarization ratios are considered. 16 

These ratios are defined as  17 
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For further convenience we will use the notations II
p pβ β β⊥= + , and pα α= . To characterize the 1 

spectral dependence of � and �, the backscattering and extinction Ångström exponents (BAE 2 

and EAE) for wavelengths λ1 and λ2 are calculated as: 3 
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The lidar - derived backscattering and extinction coefficients can be inverted to the particle 5 

microphysical properties, as described at Veselovskii et al., (2002). The only constraints on the 6 

permitted refractive index and the particle size distribution are that the refractive index is 7 

considered to be wavelength independent and that the concentration of the particles with radii 8 

below some rmin and above some rmax is zero, where the values of these radii are found in the 9 

process of inversion. 10 

 11 

2.2 MERRA-2 aerosol reanalysis  12 

The MERRA-2 simulations of aerosol properties over the observation site were made 13 

using the GOCART model (Chin et al., 2002) integrated within GEOS-5. The model includes 14 

representations of dust, sea salt, black and organic carbon, and sulfate aerosols. The aerosol 15 

components are assumed to be externally mixed. The optical properties of these aerosol 16 

components are summarized in Appendix 1. Sulfate and carbonaceous aerosols are both assumed 17 

to be in the fine mode. Sea salt and dust are both represented by five size bins spanning 0.1 – 10 18 

microns radius for dust and 0.03 – 10 microns dry radius for sea salt, allowing for simulation of 19 

both the fine and coarse fractions of each. A more complete description of how GOCART is 20 

implemented in GEOS-5 is provided in Colarco et al. (2010), which also includes a detailed 21 

evaluation of the model with respect to MODIS, MISR, and AERONET aerosol optical depth 22 

observations.  23 

The aerosol optical properties are primarily based on Mie calculations using the particle 24 

properties as in Colarco et al. (2010) and Chin et al. (2002), with spectral refractive indices from 25 

the Optical Properties of Aerosols and Clouds (OPAC, Hess et al. 1998) database. However, for 26 

dust, non-spherical optical properties derived from an offline database are used (Colarco et al. 27 

2014). For sea salt, sulfate, and the hydrophilic portion of carbonaceous aerosol, hygroscopic 28 
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growth is considered following Chin et al. (2002), with growth factors from OPAC (Gerber, 1 

1985). The refractive index for organic carbon is based on the 100% brown carbon case from 2 

Hammer et al. (2016) and it is implemented as described in Colarco et al. (2017). 3 

The sources of aerosols in the model include wind-speed based emissions of dust and sea 4 

salt, fossil fuel combustion, biomass burning, biofuel consumption, biogenic particulate organic 5 

matter, and oxidation of di-methyl sulfide (DMS) and SO2, which includes volcanic sources. 6 

Aerosol sinks include convective scavenging, dry deposition, and wet removal, where aerosol 7 

hygroscopic growth is considered in the calculation of particle fall velocity and deposition 8 

velocity. The model resolution is 0.5° × 0.625° latitude by longitude with 72 hybrid-eta layers 9 

from the surface to 0.01 hPa. Additional details of the simulation can be found in Randles et al. 10 

(2017) and Buchard et al. (2017). 11 

In MERRA-2, aerosol and meteorological observations are jointly assimilated within 12 

GEOS-5. Aerosols are assimilated by means of analysis splitting and the local displacement 13 

ensemble (LDE) methodology (Buchard et al. 2015, 2016). The system assimilated MODIS, 14 

AVHRR, MISR, and AERONET 550 nm AOD. AERONET measurements are interpolated to 15 

550 nm using the Angström relationship and the closest available channels, generally 500 and 16 

675 nm.  The assimilation determines an AOD increment, which corrects the model AOD in a 17 

way that minimizes the differences between the model and observations. The AOD increment 18 

both corrects for misplaced aerosol plumes, and scales the aerosol mass mixing ratio to match the 19 

observations. The 2D AOD increment does not contain enough information to correct either the 20 

vertical distribution of aerosols or the aerosol composition. Thus, the model determines the 21 

aerosol speciation, optical properties, and vertical distributions, while the AOD increments 22 

modulate the aerosol mass.  Thus, the assimilated aerosol distributions and physical and optical 23 

properties arise from the forecast model assumptions and the formulation of the aerosol data 24 

assimilation algorithm. 25 

 26 

3. Experimental results 27 

The smoke layers from forest fires near the equator were regularly observed over the 28 

instrumentation site during the wintertime measurement sessions made in December 2015 – 29 

January 2016. In our study we will focus on a strong smoke episode that occurred on 24-27 30 

December 2015. Air mass back trajectories over Mbour on 25 December 2015 at 04:00 UTC are 31 
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shown in Fig.1 together with map of fires on 20 December 2015 1 

(https://worldview.earthdata.nasa.gov). 2 

The air masses below 1000 m (red line) are transported over the desert and are strongly 3 

loaded by dust, while air masses at 3000 m (green line) arrive from the South and pass over the 4 

regions of forest fires, and thus can transport smoke particles. The Cimel MPL operated 5 

continuously through the period of 24-27 December and thus monitored the arrival and evolution 6 

of the smoke layer, as shown in Fig.2. An elevated smoke layer appears on 24 December around 7 

00:00 UTC. The aerosol layer becomes thicker during the day but remains confined to the height 8 

interval of 2.5 km– 4.0 km and stays well separated from the dust layer, which extends from the 9 

ground to approximately 2.0 km. Such structure of the layers is preserved throughout 25 10 

December, as well. Cirrus clouds appear at 08:00 UTC on 24 December at a height of 8 km, soon 11 

after the smoke layer arrival (Fg.2a), and persist throughout the smoke episode. After 12:00 UTC 12 

on 24 December the clouds start descending and by 7:00 UTC on 25 December the cloud base is 13 

below 6 km (Fig.2b). On 26 December strong precipitation of ice particles occurs (Fig.2c) and 14 

finally, on 27 December the cloud is located at the top of the smoke-dust layer (Fig.2d). 15 

Multiwavelength Raman lidar observations are available for the 23-25 December period 16 

only. The height – temporal evolution of the particle backscattering coefficient �532, 17 

depolarization ratio δ532 and water vapor mixing ratio w measured by Raman lidar on the nights 18 

23-24 and 24-25 December 2015 are shown in Fig.3. Due to the geometrical overlap factor the 19 

extinction data can be processed starting from approximately 750 m, thus plots of all parameters 20 

start at this height. The depolarization ratios of pure dust observed during SHADOW are in the 21 

30-35% range (Veselovskii et al., 2016), while the depolarization ratio of smoke at 532 nm 22 

normally is below 10% (e.g. Tesche et al., 2011, Burton et al., 2015). Hence depolarization 23 

measurements provide a convenient way to separate the aerosols into dust and smoke 24 

components.  25 

On the night of 23-24 December the dust layer extends up to 2500 m, but high 26 

depolarization ratio (>30%), which is usually associated with pure dust, is observed only below 27 

1000 m, meaning that in 1000 m – 2500 m range the dust is probably mixed with smoke. The 28 

optical depth of the elevated smoke layer is rather small on 23-24 December (0.1 at 5:00 UTC), 29 

but on 24-25 December it increases up to 0.25 making possible the calculation of extinction 30 
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coefficients from the Raman lidar signals. For analyzing the vertical distribution of smoke and 1 

dust particle parameters, we focus on the nighttime measurements of 24-25 December 2015. 2 

Fig.4 shows the horizontal wind direction and speed measured by the wind lidar on 24-25 3 

December. The range corrected signal of the wind lidar can be evaluated starting from 100 m 4 

height, and the corresponding height – temporal image is shown in Fig.5. The wind speed was 5 

measured in the dust layer (< 1500 m) for the whole period, however inside the smoke layer the 6 

backscatter signal is lower, so the measurements were possible only in the period of 16:00-22:00 7 

UTC on 24 December. During 24-25 December 2015, the wind in the low troposphere (<1500 8 

m) is mainly dominated by the easterly Harmattan continental trades. Deceleration and 9 

acceleration of the lower part of the Harmattan (<1000 m) are observed, respectively in the 10 

beginning of the afternoon and during the night. The vertical profile of the wind speed 11 

demonstrates the presence of a Low Level Jet (LLJ) where the maximum wind speed (Jet speed) 12 

is located at a height of 350 m (LLJ height) at 1:00 UTC. LLJs are known to contribute to 13 

regional horizontal aerosol transport and to increase vertical mixing. Indeed, the LLJ occurrence 14 

at 1:00 UTC increases the aerosol loading by transporting desert dust. The corresponding 15 

increase of backscattering due to the LLJ at 1:00 UTC on 25 December can also be seen in Fig.3. 16 

The vertical profiles of temperature T, potential temperature Θ, wind direction and speed 17 

together with relative humidity RH and water vapor mixing ratio (WVMR) from radiosonde 18 

launched from Dakar at 00:00 UTC on 25 December 2015 are shown in Fig.6. The profile of 19 

wind speed and wind direction obtained from the sonde confirms that the LLJ observed with 20 

lidar at Mbour is not a local phenomenon, because it is also observed at Dakar. The vertical 21 

profile of the potential temperature suggests that the Nocturnal Boundary Layer (NBL) top 22 

corresponds to the LLJ height. Above 3000 m, the lidar and sonde depict southerly winds which 23 

transport the smoke plume. The water vapor mixing ratio increases above 2500 m; as a result the 24 

RH in the smoke layer reaches 75% while in the dust layer RH is below 30%. 25 

To quantify the vertical distribution of particle parameters, Fig.7 shows the profiles of 26 

backscattering (�355, �532, �1064), extinction (α355, α532) coefficients and the particle 27 

depolarization ratio (δ532) derived from Raman lidar measurements for three temporal intervals 28 

on the night of 24-25 December: 19:00-23:00 UTC, 1:00-4:00 UTC and 4:00-7:00 UTC. For the 29 

profiles presented, the uncertainty of both � and � computations is estimated to be below 10% 30 

for the Raman technique and to be below 20% for �1064 computation by the Klett method. The 31 
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relative uncertainty of depolarization measurements is below 15%. The extinction and 1 

backscattering Ångström exponents
355/532Aα , 

355/532Aβ , 
532/1064Aβ  are given by Fig.8.  2 

For the first temporal interval (Fig.7a) dust and smoke layers are well separated. 3 

Extinction coefficients α355 and α532 differ in the smoke layer (α355>α532), but inside the near-4 

surface dust layer (below 1750 m) the extinction values are nearly the same. The depolarization 5 

ratio is δ532=35±5% at 750 m and it gradually decreases with height to 27±4% at 1750 m. Above 6 

that height δ532 decreases quickly, indicating an increase in the contribution of smoke particles. 7 

For the second and third temporal intervals the dust and smoke layers appear to mix leading to 8 

layering in the backscattering coefficient in the 1000 m – 2000 m range. The EAE in this range is 9 

increased up to 0.5 (Fig.8c) indicating that these layers may contain significant amounts of 10 

smoke. 11 

The EAE of pure dust observed during SHADOW is slightly negative 
355/532 0.1Aα ≈ −  12 

(Veselovskii et al., 2016). In Fig.8a the EAE below 1500 m is about 0.2±0.2, so the dust likely 13 

contains some amount of smoke. Values of EAE close to zero are observed in Fig.8b,c below 14 

1000, where the depolarization ratio increases up to 35±5%. Inside the dust layer �355<�532, so 15 

the corresponding backscattering Ångström exponent is negative. The negative values of 
355/532Aβ  16 

have been already reported by Veselovskii et al., (2016), where negative BAE was attributed to 17 

an increase of the imaginary part of the complex refractive index at 355 nm compared to 532 nm. 18 

In the center of the elevated layer at 3100 m δ532=14±3%, while at the top of this layer δ532 19 

decreases to 6±1.5% (fig.8a), indicating a possible presence of dust particles in the center of 20 

elevated layer. The loading of elevated layer with dust particles is supported also by the profiles 21 

of 
355/532Aβ : for all three temporal intervals 

355/532Aβ  demonstrates the dip in the center of elevated 22 

layer, while 
355/532Aα and 

532/1064Aβ do not decrease in the 2500- 4000 m range. As mentioned, for 23 

pure dust 
355/532Aβ  is negative, so presence of dust in the center of smoke layer should decrease 24 

the backscattering Ångström exponent. The presence of dust in the smoke layer is not surprising, 25 

because upwelling airflows in forest fires region can lift a significant amount of dust together 26 

with biomass burning products (Nisantzi et al., 2014). We should mention also, that the spectral 27 

dependence of the imaginary part (and thus 
355/532Aβ ) depends on the dust origin. In particular, no 28 

negative values of 
355/532Aβ  of dust were reported during the SAMUM campaign, so the lidar 29 

ratios at 532 nm and 355 nm were close (Tesche et al., 2011).  30 
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Lidar ratio profiles at 355 nm and 532 nm, for the same temporal intervals as in Fig.7, are 1 

shown in Fig.9. The lidar ratios in the dust layer at 532 nm and 355 nm for 19:00-23:00 UTC 2 

period are LR532=55±8 sr and LR355=70±10 sr, respectively. At the top of the elevated layer, 3 

where the smoke particles are predominant, the lidar ratios for the same period are higher: 4 

LR532=65±10 sr and LR355=75±11 sr. Due to the presence of dust in the center of the elevated 5 

layer, the height dependence of lidar ratios shows a decrease, with a minimum at approximately 6 

3000 m for all three temporal intervals. The decrease is more pronounced at 532 nm, because the 7 

difference between smoke and dust lidar ratios is larger at this wavelength. The lidar ratios below 8 

2000 m at 01:00-04:00 and 04:00-07:00 UTC become strongly oscillating because of high 9 

gradients of backscattering and extinction coefficients at low altitudes and are not shown due to 10 

high uncertainties.  11 

Fig.10, shows the dependence of the particle depolarization ratio δ532 on the extinction 12 

Ångström exponent derived from data in Fig.7,8. The depolarization ratio monotonically 13 

decreases while EAE rises from 0 to 0.9. Thus observed high values of the depolarization ratio 14 

are attributed to big dust particles with EAE close to zero, while small smoke particles are 15 

characterized by low depolarization (below 10%). If depolarization ratios of smoke δs and dust δd 16 

are known, the contributions of smoke and dust particles to the total backscattering can be 17 

separated s dβ β β= +  (Sugimoto and Lee, 2006; Tesche et al., 2009; Miffre et al., 2012; David 18 

et al., 2013, Burton et al., 2014). Assuming that the depolarization ratios of dust and smoke 19 

particles do not change with height the contributions βd and βs can be calculated as suggested by 20 

Tesche et al. (2009): 21 

( ) (1 )

( ) (1 )

s d
d

d s

δ δ δ
β β

δ δ δ
− +

=
− +

 and s dβ β β= −  ,      (6) 22 

In our computations we used values 35%dδ =  and 7%sδ = .  23 

The results of the decomposition of β532 for d
532β  and s

532β  components for the same three 24 

temporal intervals as in Fig.7 are shown in Fig.11. This figure presents the total backscattering 25 

coefficient �532 together with the particle depolarization ratio δ532. The dust contribution to 26 

backscattering is marked with magenta, while the residual backscattering 
532 532

dβ β−  is attributed 27 

to the smoke and is marked with grey. For the height regions with low backscattering the 28 

uncertainty of �532 is high, so the decomposition for these regions is not shown. The dust is 29 
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predominant below 1700 m for 19:00-23:00 UTC period, however even the elevated layer 1 

contains a significant amount of dust: at 3100 m 532 5320.3dβ β≈ . After 01:00 UTC the smoke 2 

layers descend (Fig.3) and their contribution to backscattering becomes significant down to 1000 3 

m height. 4 

 5 

4. Comparison of lidar measurements with MERRA-2 6 

MERRA-2 provides the vertical distribution of mass mixing ratios of five aerosol 7 

components, so for each of these components the extinction, backscattering coefficients and 8 

depolarization ratios can be calculated. The vertical profiles of extinction coefficient of dust, 9 

black carbon (BC), organic carbon (OC), sea salt (SS) and sulfates (SU) together with total 10 

extinction α532 are shown in Fig.12 for 03:00 UTC and 21:00 UTC on 24 December 2015. At 11 

03:00 UTC the aerosol is localized below 3000 m. Dust extinction is predominant, but 12 

contribution of OC to the total extinction coefficient rises with height reaching maxima at 2250 13 

m. The presence of a significant amount of OC agrees with the low values of depolarization ratio 14 

above 1500 m for this temporal interval in Fig.3. 15 

At 21:00 UTC an elevated layer with a maximum of extinction at 3150 m is observed 16 

(Fig.12b). In this layer OC and dust provide similar contributions to extinction (about 40% at 17 

3150 m height). From the results shown in Fig.11a we can estimate the contribution of dust to 18 

α532 in the center of elevated layer as 30% (by assuming the dust lidar ratio LR532=55 sr), so the 19 

measured and simulated dust contributions are in good agreement. Below 1750 m the dust is the 20 

main contributor to the extinction coefficient providing 88% of α532 at 1000 m (Fig.12b). The 21 

observed dust contribution to α532 at the same height is about 90% (Fig.11a), which again shows 22 

good agreement between the model and measurements. Total contribution of BC and SU to 23 

extinction is below 20% in the elevated smoke layer, and in the near-surface dust layer their 24 

contribution is negligible. The extinction coefficients can be recalculated to the backscattering 25 

using model lidar ratios of the aerosol components. Fig.12c shows the profiles of backscattering 26 

coefficients at 532 nm computed for the same temporal interval as in Fig.12b. The simulation of 27 

the backscattering coefficient is more challenging than that of extinction, because backscatter 28 

depends more strongly on the particle morphology and refractive index. A detailed comparison 29 

of measured and modeled profiles of backscattering coefficients will be performed later in this 30 

section. 31 
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As mentioned, the comparison of model and observed values is more straightforward for 1 

extinction coefficients. Fig.13 shows the time-series of extinction profiles at 355 and 532 nm 2 

modeled for the night of 24-25 December 2015 at 18:00, 21:00, 00:00, 03:00, 06:00 UTC. The 3 

profiles are shifted relative to each other by 0.2 km-1. For comparison, the same figure presents 4 

the profiles of extinction coefficients derived from Raman lidar measurements. The model 5 

reproduces well the location of the elevated smoke layer, as well as the top of the near-surface 6 

dust layer. However, the model does not resolve the oscillations of extinction profile below 2000 7 

m at 03:00 and 06:00 UTC on 25 January.   8 

To quantify the difference between the measured ( measα ) and modeled ( modα ) extinction 9 

coefficients the difference meas modα α αΔ = −  was calculated. The statistical analysis of the 10 

frequency distribution of �α for all five profiles in Fig.13 shows that at 355 nm the mean value 11 

of �α is -0.01 km-1 and standard deviation of 0.042 km-1. With typical values of extinction 12 

coefficient in elevated smoke layer and near-surface dust layer being on the order of 0.2 km-1, the 13 

relative difference of modeled and measured extinction is estimated to be below 25% for the 14 

time period considered. The results of statistical analysis for �532 nm are similar. 15 

To analyze how well the model reproduces the temporal variations of aerosol optical 16 

depth, Fig.14 presents AODs at 355 nm on 23 – 24 December 2015 for two height intervals: 750 17 

m – 2000 m and 2500 m – 4500 m. The first interval corresponds to the near-surface dust layer, 18 

while the second interval corresponds to the elevated smoke layer. The AOD is calculated from 19 

the Raman backscatter channel, and in the day time measurements could be processed only in the 20 

dust layer, due to enhanced background noise. Thus day time measurements in the elevated 21 

smoke layer are not plotted. The time of the appearance of the smoke layer is well represented in 22 

the model results (about 00:00 UTC on 24 December), however the lidar derived AOD of this 23 

layer increases rapidly from the  first appearance of the layer, while in the model the rapid 24 

increase in AOD growth starts approximately 5 hours later. The model predicts that the 25 

maximum value of AOD in the smoke layer (0.27) is reached at 20:00-24:00 UTC interval, 26 

which reasonably agrees with observations: mean value of measured AOD for this interval is 27 

0.23±0.02. After midnight the modeled AOD of the smoke layer decreases quickly, while lidar 28 

measured AOD stays about 0.25. The measured AOD of the near-surface layer agrees with the 29 

model. The observed AOD exceeds the model values in the beginning (at 00:00 UTC on 24 30 
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December measured and modeled AODs are 0.24 and 0.175, respectively), but after 10:00 UTC, 1 

the values are in better agreement. Thus, we can conclude that the model reproduces the 2 

temporal variability of AOD in the dust and smoke layers. 3 

The agreement between modeled and observed extinction profiles provides an 4 

opportunity to test how well the backscattering coefficients can be modeled. Simulation of 5 

backscattering coefficients is especially challenging for dust for several reasons. First of all, we 6 

are not confident in the accuracy of the presumed scattering phase function in the backward 7 

direction. Second, the backscattering coefficient strongly depends on the particle refractive 8 

index, in particular on the imaginary part, which may vary over a wide range depending on dust 9 

origin. The in situ ground measurements in West Africa, performed during the SAMUM field 10 

campaign, demonstrate that the mean value of  mI for dust episodes is about 0.003 at 532 nm and 11 

0.02 at 355 nm. However deviation from these mean values for every individual measurement 12 

can be significant (Müller et al., 2009; Kandler et al., 2011; Ansmann et al., 2011). The 13 

imaginary part of RI of dust in the model is assumed to be 0.007 at 355 nm, following previous 14 

OMI data analysis (Torres et al., 2007) and 0.0025 at 532 nm. 15 

Fig.15 shows measured and modeled backscattering coefficients at 355 nm and 532 nm 16 

for the same five temporal intervals as in Fig.13. At 355 nm the modeled and measured values 17 

agree for both the smoke and dust layers. However at 532 nm the aerosol backscattering 18 

coefficients agree only inside elevated layer, while below 1750 m the modeled �532 significantly 19 

exceeds the measured values. As mentioned, the modeled lidar ratio LR532 for the mixture is 20 

close to 40 sr at 1000 m, while the measured lidar ratio in the near surface dust layer is 55±8 sr. 21 

The reason for this disagreement could be that the assumed imaginary part of the refractive index 22 

for dust (0.0025 at 532 nm) is too low. Recall however, that we cannot determine the imaginary 23 

part of the refractive index for dust by simply adjusting the modeled lidar ratio to the measured 24 

one, because the lidar ratio depends on several factors besides mI, such as the particle size 25 

distribution and the aspect ratio of the ellipsoids used in the model. It is possible that the particle 26 

size distribution in the model is too much weighted toward fine mode dust.   27 

The modeled and measured particle intensive parameters, such as extinction 
355 532Aα −

 and 28 

backscattering 
355 532Aβ

−
 Ångström exponents together with the particle depolarization ratio δ532 29 

are shown in Fig.16. The measurements are averaged over 19:00 – 23:00 UTC interval while 30 

modeled values are given for 21:00 UTC. The model reproduces well the observed vertical 31 
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distribution of 
355 532Aα −

 both in the dust and the elevated layer. As follows from Fig.7a, inside the 1 

dust layer �355< �532, so the corresponding 
355 532Aβ

−
 is negative with a minimum value of about -2 

0.4. The model predicts values of 
355 532Aβ

−
 as low as -1.4. The modeled BAE is sensitive to the 3 

choice of the imaginary part of RI at 355 nm and 532 nm and, as mentioned, the chosen 4 

mI(532)=0.0025 may be too low for this episode. In the elevated layer the modeled 
355 532Aβ

−
 is 5 

close to the observed one. The modeled BAE has no minimum in the center of elevated layer, 6 

because the modeled ratio of dust and OC aerosol concentrations shows only a small variation 7 

throughout the elevated layer. 8 

The model reproduces reasonably well the depolarization in the elevated layer, but inside 9 

the dust layer the modeled δ532 is significantly lower than what is observed (22% compared to 10 

35%). This problem is well known: the spheroidal model underestimates the depolarization ratio 11 

when typical dust PSD and complex refractive index are used (Veselovskii et al., 2010; Wiegner 12 

et al., 2009; Müller et al., 2013; Nowottnick et al., 2015).  13 

One of the MERRA-2 data products is the water vapor mixing ratio (WVMR), which 14 

helps to identify atmospheric parcels, is critically important for determining atmospheric stability 15 

and serves as the source of water for aerosol hygroscopic growth. Fig.17 shows five model 16 

profiles of WVMR together with the results of Raman lidar measurements for the same temporal 17 

intervals as in Fig.13. The model reproduces rather well the WVMR profile inside the elevated 18 

layer (2500 m – 4500 m) on 24 December, though on 25 December the modeled values in this 19 

range are lower than the observations. In the near-surface dust layer, the deviation of modeled 20 

values from the measurements is larger. Statistical analysis of the deviation of modeled values 21 

from lidar measurements for all five profiles, shows that mean difference is 0.04 g/kg with 22 

standard deviation of differences of 1.6 g/kg. Thus in the elevated layer, where WVMR is 23 

approximately 8 g/kg, the agreement is quite good, however in the dust layer, which is 24 

characterized by low water vapor content (below 4 g/kg), the difference may be up to 40%. 25 

 26 

5. Inversion of lidar measurements to particle microphysical properties 27 

In the previous section, as validation of the model output we compared the modeled 28 

aerosol optical parameters, such as extinction, backscattering coefficients, and depolarization 29 

ratio with the values derived from lidar measurements in a straightforward way. The comparison 30 
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of particle microphysical properties such as volume, effective radius and complex refractive 1 

index, however, is not straightforward, since it needs inversion of the measurements and requires 2 

additional assumptions. In the case of dust particles the inversion becomes especially 3 

challenging, because:  4 

- The size distribution of dust contains a strong coarse mode with particle radii extending up to 5 

~ 15 µm, and the estimation of properties for such big particles is difficult since 6 

measurements are only performed in the wavelength range 0.355-1.064 µm; 7 

- The inversions have to consider the refractive index as spectrally independent. In fact, the 8 

imaginary part of the dust RI is spectrally dependent with a strong enhancement at 355 nm 9 

compared to 532 nm; 10 

- The dust particles are not spherical so that the application of Mie formulas for the forward 11 

modeling results in errors in computing the scattering phase function. 12 

Regarding the shape issue, one of the ways to mimic the scattering properties of dust 13 

particles is to use the model of randomly oriented spheroids (Mishchenko et al., 1997; Dubovik 14 

et al., 2006). The implementation of this model for inversion of dust lidar measurements is 15 

described in Veselovskii et al., (2010, 2016), and Müller et al., (2013). This algorithm was used 16 

also for inversion of our 3�+2� observations. The range of particle radius in the inversion has 17 

been set to a minimum and maximum of 0.075 and 15 �m, respectively. The real part of RI was 18 

allowed to vary in the range 1.35 - 1.65, while the imaginary part varied in the range 0 - 0.02. 19 

The refractive index was assumed to be spectrally independent. The effects of a possible spectral 20 

dependence of the imaginary part of RI were considered in Veselovskii et al., (2016). 21 

Profiles of the effective radius, volume density, and real part of the refractive index 22 

retrieved from optical measurements in Fig.7a are shown in Fig.18. The inversion was performed 23 

for two cases, with the assumption of all spherical particles or all spheroids. A realistic solution 24 

(for the mixture of spherical and non-spherical particles), should be closer to spheroids in the 25 

dust layer, while in the elevated layer (where depolarization ratio is below 15%) it should be 26 

closer to the results obtained with spheres. The model results provided by MERRA-2 are shown 27 

on the same plot. The effective radius and volume density obtained in assumption of spherical 28 

particles are always higher than the values obtained with spheroids. The modeled effective radius 29 

at 1100 m height is 1.1 �m, which is close to reff=0.95±0.3 �m obtained from lidar 30 

measurements using the spheroids model. Comparing the lidar retrievals with model in the dust 31 
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layer, we should keep in mind that inside 1500-2000 m height range the dust particles are mixed 1 

with biomass burning products, thus the use of only spheroids in retrieval underestimates the 2 

effective radius and volume. Moreover, accounting for the spectral dependence of the imaginary 3 

part of the dust may additionally increase the retrieved values of V and reff by factor 1.2-1.3 4 

(Veselovskii et al., 2016). 5 

Lidar derived effective radius in the elevated layer at 3000 m is approximately 0.4 �m 6 

and 0.5 �m when spheroids and spheres are used respectively, while the modeled value is 0.3 7 

�m. The reason for the lower value of modeled effective radius is the contribution of black 8 

carbon, which is characterized by small size and relatively low hygroscopic growth. Recall that 9 

in the inversion of lidar measurements, the smallest radius considered is 0.075 �m. Modeled 10 

values of the volume density agree well with lidar retrievals in both dust and elevated layers. 11 

The estimation of the real part of RI from lidar measurements is sensitive to the type of 12 

kernel functions chosen for retrieval. In the regularization algorithm the treatment of dust 13 

particles as spheres strongly underestimates mR (Veselovskii et al., 2010), so results obtained 14 

with spheres in the dust layer are not shown in Fig.18c. At 1000 m the mR retrieved with 15 

spheroids is 1.52±0.05, which agrees well with the modeled value. Inside the elevated smoke 16 

layer, where fine mode particles predominate, the application of spheroids overestimates mR. The 17 

lidar derived real part of RI at 3000 m is 1.43±0.05 for spheres and 1.51±0.05 for spheroids, so 18 

we expect that the true value would lie within this. The simulated value of mR=1.50 in the 19 

elevated layer is quite high, which is again the result of BC contribution.  20 

The single scattering albedo (SSA) is one of the key parameters to be retrieved and 21 

conclusions about the potential of the multiwavelength lidar method strongly rely on its ability to 22 

profile SSA. Fig.19 shows SSA at 355 nm, 532 nm and 1064 nm. As mentioned, the spectral 23 

dependence of mI was not accounted for and the algorithm retrieves an average value of the 24 

imaginary part over the interval of 355 nm – 1064 nm. In particular, for dust and OC the 25 

imaginary part is underestimated at 355 nm and overestimated at 532nm and 1064 nm. As a 26 

result, in the dust layer the retrieved SSA exceeds the model values at 355 nm, while at 532nm 27 

and 1064 the situation is opposite. Still at a height of 1000 m, the difference between modeled 28 

and lidar derived SSAs is below 0.04 for all wavelengths. In the elevated layer, where the 29 

spectral dependence of mI is less pronounced, the simulated and retrieved SSA agree well with a 30 

corresponding difference of less than 0.02. 31 
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 1 

6. Summary and conclusion 2 

The synergy of lidar observations with the aerosol transport model has a great potential to 3 

improve the characterization of aerosols properties, and as a first step in such synergy one has to 4 

demonstrate how well observations and models agree and describe the same aerosol scenario. 5 

For that we have considered a smoke/dust episode over West Africa to compare the vertical 6 

profiles of particle parameters modeled by MERRA-2 and retrieved from Raman lidar 7 

measurements. In the case selected, the simultaneous presence of the dust and smoke layers 8 

resulted in significant height variation of particle parameters, providing a good opportunity to 9 

test the models’ capability to reproduce complicated vertical structure. Modeled and observed 10 

vertical profiles of �355 and �532 show good similarity: MERRA-2 provides the correct location 11 

of both the near-surface and elevated layers.  12 

The modeling of the dust lidar ratio is challenging due to irregularity of the particles 13 

shape and due to the spectral dependence of the imaginary part of the refractive index. The mI 14 

can change significantly for dust of different origin and this variability may be accounted for in 15 

future model developments. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface 16 

dust layer is close to the observed value (70±10 sr). At 532 nm however, the simulated dust lidar 17 

ratio (about 40 sr) is lower than measurements (55±7 sr). This discrepancy may be an indication 18 

that mI of dust during the episode considered is higher than the value assumed in the model. 19 

Another possible explanation is that the model particle size distribution is too much weighted 20 

toward fine mode dust. The measured lidar ratios at the top of the elevated layer, where smoke 21 

particles are predominant, are LR355=75±11 sr and LR532=70±10 sr, which is close to the 22 

corresponding model values for organic carbon of 71 sr and 66 sr, respectively. 23 

MERRA-2 predicts the existence of a significant amount of dust in the elevated smoke 24 

layer, and the high values of observed depolarization ratio agree with this prediction. The 25 

existence of minima of 355/532Aβ  in the center of elevated layer, characterized by the highest δ532 26 

also supports this finding. Moreover, the lidar ratios at both 355 and 532 nm also have a minima 27 

in the center of the layer because the lidar ratio of dust is lower than that of smoke. The 28 

contributions of dust and smoke particles to the aerosol backscattering and extinction coefficient 29 

at 532 nm evaluated from particle depolarization ratio agree with the values provided by the 30 

model. Of course an analysis of only one episode is not sufficient for broad conclusions 31 



19 
 

regarding how well the model reproduces the vertical distribution of particle properties. More 1 

measurements at different locations are needed. However, the results presented here demonstrate 2 

that observations and the MERRA-2 model contribute in a complementary way allowing to 3 

separate the contributions of different chemical component of the aerosol mixture.  4 

The motivation for this work is to show that the aerosol transport model has sufficient 5 

skill to serve as an additional constraint in inversion of 3�+2α lidar observations and 6 

development of such constrained inversion is in progress. Assimilation of lidar measured 7 

parameters in the model is the subject of our future efforts. 8 
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APENDIX  3 

Optical properties of aerosol components in MERRA-2 model. 4 

Table 1 summarizes the main characteristics of five aerosol components: dust, sea salt, 5 

black carbon, organic, carbon and sulfates used in MERRA-2 model. For dust and sea salt five 6 

size bins are considered. All values are given for the relative humidity RH=0. Thus OC, BC and 7 

SU with the effective radii of 0.09 µm, 0.04 µ and, 0.157 µm respectively are presented by the 8 

fine fraction only, while dust and sea salt contribute to both fine and coarse fractions. 9 

The dust particles are assumed to be hydrophobic, but other aerosol components may 10 

present significant hygroscopic growth. To account for the effect of relative humidity, the growth 11 

factor g, which is the ratio of particle radius at current RH to the dry particle radius, is 12 

introduced. Fig.A1 shows dependence of the growth factor of different aerosol components on 13 

relative humidity (RH). For sea salt the results are given for five size bins from Table 1. Each bin 14 

has different growth factor: g increases with increase of particle radius. Relative humidity 15 

modifies also the particle complex refractive index (CRI). Dependence of the real and the 16 

imaginary part of particle components on relative humidity is shown in fig.A2. For dry sea salt 17 

particles RI is supposed to be the same for all size bins. However in the process of hygroscopic 18 

growth the RI of different bins behaves differently: both mR and mI decrease with bin number 19 

(radius) increasing.  20 

21 
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Table 1. Parameters of the aerosol components, such as minimal radius (rmin), maximal radius 3 

(rmax), effective radius (reff), real (mR) and imaginary (mI) part of the refractive index at 355 nm, 4 

532 nm, 1064 nm used in MERRA-2 model. For dust and sea salt five size bins are considered. 5 

All values are given for RH=0.  6 

Component rmin, 
µm 

rmax 
µm 

reff 
µm 

mR355 mR532 mR1064 mI355 mI532 mI1064 

D
us

t 

Bin 1 0.1 1.0 0.64 1.53 1.53 1.53 0.007 0.0026 0.0022 

Bin 2 1 1.5 1.32 1.53 1.53 1.53 0.007 0.0026 0.0022 

Bin 3 1.5 3.0 2.30 1.53 1.53 1.53 0.007 0.0026 0.0022 

Bin 4 3.0 7.0 4.17 1.53 1.53 1.53 0.007 0.0026 0.0022 

Bin 5 7.0 10.0 7.67 1.53 1.53 1.53 0.007 0.0026 0.0022 

S
ea

 S
al

t 

Bin 1 0.03 0.1 0.08 1.51 1.50 1.47 2.9E-7 1.2E-8 1.97E-4 

Bin 2 0.1 0.5 0.27 1.51 1.50 1.47 2.9E-7 1.2E-8 1.97E-4 

Bin 3 0.5 1.5 1.07 1.51 1.50 1.47 2.9E-7 1.2E-8 1.97E-4 

Bin 4 1.5 5 2.55 1.51 1.50 1.47 2.9E-7 1.2E-8 1.97E-4 

Bin 5 5 10 7.3 1.51 1.50 1.47 2.9E-7 1.2E-8 1.97E-4 

OC 0.01 0.29 0.09 1.53 1.53 1.52 0.048 0.009 0.016 

BC 0.01 0.29 0.04 1.75 1.75 1.75 0.46 0.44 0.44 

SU 0.01 0.29 0.157 1.45 1.43 1.42 1E-8 1E-8 2.9E-6 

 7 

8 
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Fig.A1. Dependence of the growth factor of organic carbon, black carbon, sulfates and sea salt 4 
on relative humidity (RH) used in MERRA-2. For the sea salt the results are given for five size 5 
bins from Table 1. The growth factor increases with increase of bin number. 6 
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Fig.A2. Dependence of the real and imaginary part of the refractive index of organic carbon, 3 

black carbon, sulfates and sea salt on relative humidity (RH) used in the MERRA-2 model. For 4 

the sea salt the results are given for five size bins from Table 1. Both mR and mI decrease with 5 

bin number increasing. 6 

7 
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 1 

 2 

Fig.1. Five-day backward trajectories for the air mass in Mbour at altitudes 750 m, 1500 m, 3500 3 

m, on 25 December 2015 at 04:00 UTC together with the map of forest fires on 20 December 4 

2015. 5 
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 3 

 4 

 5 

Fig.2. Range corrected lidar signal (in arbitrary units) of Cimel MPL for 24 - 27 December 2015.  6 
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 Fig.3 Height-temporal distributions of the backscattering coefficient and particle depolarization 2 

ratio at 532 nm together with the water vapor mixing ratio derived from the Raman lidar 3 

measurements on the nights 23-24 (left column) and 24-25 December 2015 (right column). 4 

5 
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 2 

Fig.4. Time-height section of horizontal wind direction (arrows) and wind speed (color map) 3 
deduced from Doppler lidar during 24-25 December 2015. Leftward and downward arrows 4 
represent, respectively, easterly wind and northerly wind 5 

 6 
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Fig.5. Time-height section of the logarithmic range corrected lidar signal (in arbitrary units) 1 

deduced from the Doppler lidar measurements during the 24-25 December 2015 night.  2 

 3 
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 5 

Fig.6. Vertical profiles of (a) temperature T, potential temperature Θ, (b) wind direction and 6 
speed and (c) relative humidity RH and water vapor mixing ratio (WVMR) measured by the 7 
radiosonde in Dakar at 00:00 on 25 December 2015. Solid line in plot (a) shows the aerosol 8 
backscattering coefficient at 532 nm in arbitrary units measured by the Raman lidar at 21:00 on 9 
24 December. 10 
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Fig.7. Vertical profiles of the aerosol backscattering (�355, �532, �1064) and extinction (α355, 3 

α532) coefficients together with the particle depolarization ratio (δ532) for three temporal 4 

intervals: 19:00-23:00, 01:00-04:00 and 04:00-07:00 UTC on 24-25 December 2015. The values 5 

of δ532 are multiplied by factor 0.02. 6 
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Fig.8 Extinction ( 355/532Aα ) and backscattering ( 355/532Aβ , 532/1064Aβ ) Ångström exponents together 3 

with backscattering coefficient �532 for the same three temporal intervals as in Fig.7.  4 
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Fig.9. Lidar ratios at 355 nm (solid lines) and 532 nm (dash lines) for three temporal intervals 4 

from Fig.7. 5 
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Fig.10. Particle depolarization ratio as a function of the extinction Ångström exponent derived 4 
from data shown in Fig.7, 8. 5 
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Fig.11. Contributions of dust and smoke to the total backscattering coefficient �532 together with 3 

particle depolarization ratio δ532 for three temporal intervals on 24-25 December 2015. Magenta 4 

and grey regions correspond to dust and smoke contribution to total scattering 
532 532 532

d sβ β β= + . 5 
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 4 
Fig.12. Vertical profiles of extinction coefficients at (a) 03:00 UTC, (b) 21:00 UTC and (c) 5 

backscattering coefficients at 21:00 UTC on 24 December 2015 from MERRA-2 model at 532 6 

nm. Profiles are given for five aerosol components: dust, black carbon (BC), organic carbon 7 

(OC), sea salt (SS), sulfates (SU) together with total extinction α532 and backscattering �532. 8 
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Fig.13. Comparison of extinction profiles at (a) 355 nm and (b) 532 nm derived from Raman 4 

lidar measurements (line) and modeled by MERRA-2 (line + symbols) on the night 24-25 5 

December 2015. Model profiles are provided at 18:00, 21:00, 00:00, 03:00, 06:00 UTC. The 6 

lidar measurements are given for temporal intervals centered at: 19:00, 21:00, 00:00, 03:00, 7 
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06:00 UTC. For each profile 2 hours of measurements are averaged. The profiles are shifted 1 

relatively to each other by 0.2 km-1.  2 
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Fig.14. Aerosol optical depth at 355 nm on 23 – 24 December 2015 obtained from MERRA-2 5 

(line + symbols) and from the Raman lidar measurements (solid lines). The results are given for 6 

two height intervals: 750 m – 2000 m (red) and 2500 m – 4500 m (black). Zero of time scale 7 

corresponds to 00:00 UTC on 24 December. 8 
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Fig.15. Backscattering coefficients at (a) 355 nm and (b) 532 nm measured by Raman lidar (solid 4 

line) and modeled by MERRA-2 (line + symbols) on the night 24-24 December 2015. Profiles 5 

are shifted relatively to each other by 0.0025 km-1sr-1. The temporal intervals are the same as in 6 

Fig.13. 7 

8 



44 
 

 1 

 2 

0

1000

2000

3000

4000

5000

-1.5 -1.0 -0.5 0.0 0.5 1.0

	A α

355/532

 	 	 	 	A β

355/532

 

	δ
532

	 	 	 	 	 	 	 	 	 	β
532

	 	 	

H
ei
gh

t,	
m

A ng s trom	exponent

0 20 40 60 80 100
B acks ca ttering ,	a .u.D epola riz a tion,	%

 3 

Fig.16. Extinction ( 355/532Aα ) and backscattering ( 355/532Aβ ) Ångström exponents together with the 4 

particle depolarization ratio δ532 obtained from lidar measurements (line) and from MERRA-2 5 

modeling (line + symbols). Lidar data are averaged over 19:00 – 23:00 UTC period while model 6 

data are given for 21:00 UTC. 7 
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Fig.17. Water vapor mixing ratio derived from Raman lidar measurements (solid line) and 4 

obtained from the model (line + symbols) on the night 24-25 December 2015. Temporal intervals 5 

are the same as in Fig.13. The profiles are shifted relatively each other by 5 g/kg. 6 
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 4 
Fig.18. Profiles of (a) effective radius, (b) particle volume and (c) real part of the refractive index 5 

on 24 December 2015 retrieved from 3�+2α lidar measurements shown in Fig.7a (solid 6 

symbols) and provided by MERRA-2  for 21:00 UTC (open symbols). Inversion of lidar 7 

measurements was performed in assumption of spherical particles (s) and using the model of 8 

spheroids (ns).  9 
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Fig.19. The single scattering albedo at 355 nm (blue), 532 nm (green) and 1064 nm (red) on 24 2 

December 2015 retrieved from 3�+2α lidar measurements shown in Fig.7a (solid symbols) and 3 

provided by the MERRA-2 model for 21:00 UTC (line + open symbols). For inversion of lidar 4 

data the spheroids (ns) were used below 2000 m and spheres (s) above 2000 m.  5 
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 1 

Captures to figures 2 

Fig.A1. Dependence of the growth factor of organic carbon, black carbon, sulfates and sea salt 3 
on relative humidity (RH) used in MERRA-2. For the sea salt the results are given for five size 4 
bins from Table 1. The growth factor increases with increase of bin number. 5 

Fig.A2. Dependence of the real and imaginary part of the refractive index of organic carbon, 6 
black carbon, sulfates and sea salt on relative humidity (RH) used in the MERRA-2 model. For 7 
the sea salt the results are given for five size bins from Table 1. Both mR and mI decrease with 8 
bin number increasing. 9 

Fig.1. Five-day backward trajectories for the air mass in Mbour at altitudes 750 m, 1500 m, 3500 10 
m, on 25 December 2015 at 04:00 UTC together with the map of forest fires on 20 December 11 
2015. 12 

Fig.2. Range corrected lidar signal (in arbitrary units) of Cimel MPL for 24 - 27 December 2015.  13 

Fig.3 Height-temporal distributions of the backscattering coefficient and particle depolarization 14 
ratio at 532 nm together with the water vapor mixing ratio derived from the Raman lidar 15 
measurements on the nights 23-24 (left column) and 24-25 December 2015 (right column). 16 

Fig.4. Time-height section of horizontal wind direction (arrows) and wind speed (color map) 17 
deduced from Doppler lidar during 24-25 December 2015. Leftward and downward arrows 18 
represent, respectively, easterly wind and northerly wind 19 

Fig.5. Time-height section of the logarithmic range corrected lidar signal (in arbitrary units) 20 
deduced from the Doppler lidar measurements during the 24-25 December 2015 night.  21 

Fig.6. Vertical profiles of (a) temperature T, potential temperature Θ, (b) wind direction and 22 
speed and (c) relative humidity RH and water vapor mixing ratio (WVMR) measured by the 23 
radiosonde in Dakar at 00:00 on 25 December 2015. Solid line in plot (a) shows the aerosol 24 
backscattering coefficient at 532 nm in arbitrary units measured by the Raman lidar at 21:00 on 25 
24 December. 26 

Fig.7. Vertical profiles of the aerosol backscattering (�355, �532, �1064) and extinction (α355, 27 
α532) coefficients together with the particle depolarization ratio (δ532) for three temporal 28 
intervals: 19:00-23:00, 01:00-04:00 and 04:00-07:00 UTC on 24-25 December 2015. The values 29 
of δ532 are multiplied by factor 0.02. 30 

Fig.8 Extinction ( 355/532Aα ) and backscattering ( 355/532Aβ , 532/1064Aβ ) Ångström exponents together 31 

with backscattering coefficient �532 for the same three temporal intervals as in Fig.7.  32 

Fig.9. Lidar ratios at 355 nm (solid lines) and 532 nm (dash lines) for three temporal intervals 33 
from Fig.7. 34 

Fig.10. Particle depolarization ratio as a function of the extinction Ångström exponent derived 35 
from data shown in Fig.7, 8. 36 

Fig.11. Contributions of dust and smoke to the total backscattering coefficient �532 together with 37 
particle depolarization ratio δ532 for three temporal intervals on 24-25 December 2015. Magenta 38 
and grey regions correspond to dust and smoke contribution to total scattering 
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Fig.12. Vertical profiles of extinction coefficients at (a) 03:00 UTC, (b) 21:00 UTC and (c) 1 
backscattering coefficients at 21:00 UTC on 24 December 2015 from MERRA-2 model at 532 2 
nm. Profiles are given for five aerosol components: dust, black carbon (BC), organic carbon 3 
(OC), sea salt (SS), sulfates (SU) together with total extinction α532 and backscattering �532. 4 

Fig.13. Comparison of extinction profiles at (a) 355 nm and (b) 532 nm derived from Raman 5 
lidar measurements (line) and modeled by MERRA-2 (line + symbols) on the night 24-25 6 
December 2015. Model profiles are provided at 18:00, 21:00, 00:00, 03:00, 06:00 UTC. The 7 
lidar measurements are given for temporal intervals centered at: 19:00, 21:00, 00:00, 03:00, 8 
06:00 UTC. For each profile 2 hours of measurements are averaged. The profiles are shifted 9 
relatively to each other by 0.2 km-1.  10 

Fig.14. Aerosol optical depth at 355 nm on 23 – 24 December 2015 obtained from MERRA-2 11 
(line + symbols) and from the Raman lidar measurements (solid lines). The results are given for 12 
two height intervals: 750 m – 2000 m (red) and 2500 m – 4500 m (black). Zero of time scale 13 
corresponds to 00:00 UTC on 24 December. 14 

Fig.15. Backscattering coefficients at (a) 355 nm and (b) 532 nm measured by Raman lidar (solid 15 
line) and modeled by MERRA-2 (line + symbols) on the night 24-24 December 2015. Profiles 16 
are shifted relatively to each other by 0.0025 km-1sr-1. The temporal intervals are the same as in 17 
Fig.13. 18 

Fig.16. Extinction ( 355/532Aα ) and backscattering ( 355/532Aβ ) Ångström exponents together with the 19 

particle depolarization ratio δ532 obtained from lidar measurements (line) and from MERRA-2 20 
modeling (line + symbols). Lidar data are averaged over 19:00 – 23:00 UTC period while model 21 
data are given for 21:00 UTC. 22 

Fig.17. Water vapor mixing ratio derived from Raman lidar measurements (solid line) and 23 
obtained from the model (line + symbols) on the night 24-25 December 2015. Temporal intervals 24 
are the same as in Fig.13. The profiles are shifted relatively each other by 5 g/kg. 25 

Fig.18. Profiles of (a) effective radius, (b) particle volume and (c) real part of the refractive index 26 
on 24 December 2015 retrieved from 3�+2α lidar measurements shown in Fig.7a (solid 27 
symbols) and provided by MERRA-2  for 21:00 UTC (open symbols). Inversion of lidar 28 
measurements was performed in assumption of spherical particles (s) and using the model of 29 
spheroids (ns).  30 

Fig.19. The single scattering albedo at 355 nm (blue), 532 nm (green) and 1064 nm (red) on 24 31 
December 2015 retrieved from 3�+2α lidar measurements shown in Fig.7a (solid symbols) and 32 
provided by the MERRA-2 model for 21:00 UTC (line + open symbols). For inversion of lidar 33 
data the spheroids (ns) were used below 2000 m and spheres (s) above 2000 m.  34 
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