1,177 research outputs found

    Dynamic laryngeal narrowing during exercise: a mechanism for generating intrinsic PEEP in COPD?

    Get PDF
    INTRODUCTION: Patients with COPD commonly exhibit pursed-lip breathing during exercise, a strategy that, by increasing intrinsic positive end-expiratory pressure, may optimise lung mechanics and exercise tolerance. A similar role for laryngeal narrowing in modulating exercise airways resistance and the respiratory cycle volume–time course is postulated, yet remains unstudied in COPD. The aim of this study was to assess the characteristics of laryngeal narrowing and its role in exercise intolerance and dynamic hyperinflation in COPD. METHODS: We studied 19 patients (n=8 mild–moderate; n=11 severe COPD) and healthy age and sex matched controls (n=11). Baseline physiological characteristics and clinical status were assessed prior to an incremental maximal cardiopulmonary exercise test with continuous laryngoscopy. Laryngeal narrowing measures were calculated at the glottic and supra-glottic aperture at rest and peak exercise. RESULTS: At rest, expiratory laryngeal narrowing was pronounced at the glottic level in patients and related to FEV(1) in the whole cohort (r=−0.71, p<0.001) and patients alone (r=−0.53, p=0.018). During exercise, glottic narrowing was inversely related to peak ventilation in all subjects (r=−0.55, p=0.0015) and patients (r=−0.71, p<0.001) and peak exercise tidal volume (r=−0.58, p=0.0062 and r=−0.55, p=0.0076, respectively). Exercise glottic narrowing was also inversely related to peak oxygen uptake (% predicted) in all subjects (r=−0.65, p<0.001) and patients considered alone (r=−0.58, p=0.014). Exercise inspiratory duty cycle was related to exercise glottic narrowing for all subjects (r=−0.69, p<0.001) and patients (r=−0.62, p<0.001). CONCLUSIONS: Dynamic laryngeal narrowing during expiration is prevalent in patients with COPD and is related to disease severity, respiratory duty cycle and exercise capacity

    Lung function indices for predicting mortality in COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterised by high morbidity and mortality. It remains unknown which aspect of lung function carries the most prognostic information and if simple spirometry is sufficient. Survival was assessed in COPD outpatients whose data had been added prospectively to a clinical audit database from the point of first full lung function testing including spirometry, lung volumes, gas transfer and arterial blood gases. Variables univariately associated with survival were entered into a multivariate Cox proportional hazard model. 604 patients were included (mean±sd age 61.9±9.7 years; forced expiratory volume in 1 s 37±18.1% predicted; 62.9% males); 229 (37.9%) died during a median follow-up of 83 months. Median survival was 91.9 (95% CI 80.8–103) months with survival rates at 3 and 5 years 0.83 and 0.66, respectively. Carbon monoxide transfer factor % pred quartiles (best quartile (>51%): HR 0.33, 95% CI 0.172–0.639; and second quartile (51–37.3%): HR 0.52, 95% CI 0.322–0.825; versus lowest quartile (<27.9%)), age (HR 1.04, 95% CI 1.02–1.06) and arterial oxygen partial pressure (HR 0.85, 95% CI 0.77–0.94) were the only parameters independently associated with mortality. Measurement of gas transfer provides additional prognostic information compared to spirometry in patients under hospital follow-up and could be considered routinely

    The IĸB protein BCL3 controls osteogenesis and bone health.

    Get PDF
    OBJECTIVE: IĸB protein B-cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signalling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and WT controls were characterised for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength and turnover were assessed. A destabilisation of the medial meniscus (DMM) model of osteoarthritic ostephytogenesis was utilised to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength and altered bone turnover. Molecular and cellular characterisation of mesenchymal precursors showed that Bcl3-/- cells display an accelerated osteogenic transcriptional profile that leads to enhanced differentiation into osteoblasts with increased functional activity; which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibit decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralisation to enable appropriate bone formation, whilst in a pathological setting it contributes to skeletal pathology

    Influence of supramolecular forces on the linear viscoelasticity of gluten

    Get PDF
    Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks

    A Randomized Controlled Trial of Angiotensin-Converting Enzyme Inhibition for Skeletal Muscle Dysfunction in COPD

    Get PDF
    BACKGROUND: Skeletal muscle impairment is a recognized complication of COPD, predicting mortality in severe disease. Increasing evidence implicates the renin-angiotensin system in control of muscle phenotype. We hypothesized that angiotensin-converting enzyme (ACE) inhibition would improve quadriceps function and exercise performance in COPD. METHODS: This double-blind, randomized placebo-controlled trial investigated the effect of the ACE inhibitor, fosinopril, on quadriceps function in patients with COPD with quadriceps weakness. Primary outcomes were change in quadriceps endurance and atrophy signaling at 3 months. Quadriceps maximum voluntary contraction (QMVC), mid-thigh CT scan of the cross-sectional area (MTCSA), and incremental shuttle walk distance (ISWD) were secondary outcomes. RESULTS: Eighty patients were enrolled (mean [SD], 65 [8] years, FEV1 43% [21%] predicted, 53% men). Sixty-seven patients (31 fosinopril, 36 placebo) completed the trial. The treatment group demonstrated a significant reduction in systolic BP (Δ−10.5 mm Hg; 95% CI, −19.9 to −1.1; P = .03) and serum ACE activity (Δ−20.4 IU/L; 95% CI, −31.0 to −9.8; P < .001) compared with placebo. No significant between-group differences were observed in the primary end points of quadriceps endurance half-time (Δ0.5 s; 95% CI, −13.3-14.3; P = .94) or atrogin-1 messenger RNA expression (Δ−0.03 arbitrary units; 95% CI, −0.32-0.26; P = .84). QMVC improved in both groups (fosinopril: Δ1.1 kg; 95% CI, 0.03-2.2; P = .045 vs placebo: Δ3.6 kg; 95% CI, 2.1-5.0; P < .0001) with a greater increase in the placebo arm (between-group, P = .009). No change was shown in the MTCSA (P = .09) or ISWD (P = .51). CONCLUSIONS: This randomized controlled trial found that ACE inhibition, using fosinopril for 3 months, did not improve quadriceps function or exercise performance in patients with COPD with quadriceps weakness

    Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR

    Get PDF
    R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications

    HER2 testing in breast cancer: Opportunities and challenges

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results

    Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil

    Get PDF
    Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks
    • …
    corecore