81 research outputs found

    A High Contrast Imaging Survey of SIM Lite Planet Search Targets

    Get PDF
    With the development of extreme high contrast ground-based adaptive optics instruments and space missions aimed at detecting and characterizing Jupiter- and terrestrial-mass planets, it is critical that each target star be thoroughly vetted to determine whether it is a viable target given both the instrumental design and scientific goals of the program. With this in mind, we have conducted a high contrast imaging survey of mature AFGKM stars with the PALAO/PHARO instrument on the Palomar 200 inch telescope. The survey reached sensitivities sufficient to detect brown dwarf companions at separations of > 50 AU. The results of this survey will be utilized both by future direct imaging projects such as GPI, SPHERE and P1640 and indirect detection missions such as SIM Lite. Out of 84 targets, all but one have no close-in (0.45-1") companions and 64 (76%) have no stars at all within the 25" field-of-view. The sensitivity contrasts in the Ks passband ranged from 4.5 to 10 for this set of observations. These stars were selected as the best nearby targets for habitable planet searches owing to their long-lived habitable zones (> 1 billion years). We report two stars, GJ 454 and GJ 1020, with previously unpublished proper motion companions. In both cases, the companions are stellar in nature and are most likely M dwarfs based on their absolute magnitudes and colors. Based on our mass sensitivities and level of completeness, we can place an upper limit of ~17% on the presence of brown dwarf companions with masses >40 MJ at separations of 1 arcsecond. We also discuss the importance of including statistics on those stars with no detected companions in their field of view for the sake of future companion searches and an overall understanding of the population of low-mass objects around nearby stars.Comment: Accepted to PASP, Figure 7 available upon reques

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Astrometric Detection of Terrestrial Planets in the Habitable Zones of Nearby Stars with SIM PlanetQuest

    Full text link
    SIM PlanetQuest (Space Interferometry Mission) is a space-borne Michelson interferometer for precision stellar astrometry, with a nine meter baseline, currently slated for launch in 2015. One of the principal science goals is the astrometric detection and orbit characterization of terrestrial planets in the habitable zones of nearby stars. Differential astrometry of the target star against a set of reference stars lying within a degree will allow measurement of the target star's reflex motion with astrometric accuracy of 1 micro-arcsecond in a single measurement. We assess SIM's capability for detection (as opposed to characterization by orbit determination) of terrestrial planets in the habitable zones of nearby solar-type stars. We compare SIM's performance on target lists optimized for the SIM and Terrestrial Planet Finder Coronograph (TPF-C) missions. Performance is quantified by three metrics: minimum detectable planet mass, number and mass distribution of detected planets, and completeness of detections in each mass range. Finally, we discuss the issue of confidence in detections and non-detections, and show how information from SIM's planet survey can enable TPF to increase its yield of terrestrial planets.Comment: Minor corrections to figures and tables. 46 pages, 27 figures. To appear in PASP (Publications of the Astronomical Society of the Pacific), May 200

    Keck NIRSPEC Radial Velocity Observations of Late-M dwarfs

    Get PDF
    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m/s for our late-M dwarfs over a one to four year-long baseline. Our sample contains two stars with RV variations of >1000 m/s. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 MJsini on the masses of any companions around those two M dwarfs with RV variations of <160 m/s at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0 to 2.4 micron to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.Comment: Accepted to Ap

    Pinwheels in the Quintuplet Cluster

    Get PDF
    The five enigmatic Cocoon stars after which the Quintuplet cluster was christened have puzzled astronomers since their discovery. Their extraordinary cool, featureless thermal spectra have been attributed to various stellar types from young to highly evolved, while their absolute luminosities places them among the supergiants. We present diffraction-limited images from the Keck 1 telescope which resolves this debate with the discovery of rotating spiral plumes characteristic of colliding-wind binary "pinwheel" nebulae. Such elegant spiral structures, found around high-luminosity Wolf-Rayet stars, have recently been implicated in the behavior of supernovae lightcurves in the radio and optical.Comment: Published Science, August 19 2006. A complete version of this paper (with formatting and other minor changes) can be found at http://www.sciencemag.org

    Survey of Nearby FGK Stars at 160 μm with Spitzer

    Get PDF
    The Spitzer Space Telescope has advanced debris disk science tremendously with a wealth of information on debris disks around nearby A, F, G, K, and M stars at 24 and 70 μm with the MIPS photometer and at 8-34 μm with IRS. Here we present 160 μm observations of a small subset of these stars. At this wavelength, the stellar photospheric emission is negligible and any detected emission corresponds to cold dust in extended Kuiper Belt analogs. However, the Spitzer 160 μm observations are limited in sensitivity by the large beam size which results in significant "noise" due to cirrus and extragalactic confusion. In addition, the 160 μm measurements suffer from the added complication of a light leak next to the star's position whose flux is proportional to the near-infrared flux of the star. We are able to remove the contamination from the leak and report 160 μm measurements or upper limits for 24 stars. Three stars (HD 10647, HD 207129, and HD 115617) have excesses at 160 μm that we use to constrain the properties of the debris disks around them. A more detailed model of the spectral energy distribution of HD 10647 reveals that the 70 and 160 μm emission could be due to small water ice particles at a distance of 100 AU, consistent with Hubble Space Telescope optical imaging of circumstellar material in the system

    Accurate Coordinates and 2MASS Cross-IDs for (Almost) All Gliese Catalog Stars

    Full text link
    We provide precise J2000, epoch 2000 coordinates and cross-identifications to sources in the 2MASS point source catalog for nearly all stars in the Gliese, Gliese and Jahreiss, and Woolley catalogs of nearby stars. The only Gliese objects where we were not successful are two Gliese sources that are actually QSOs, two proposed companions to brighter stars which we believe do not exist, four stars included in one of the catalogs but identified there as only optical companions, one probable plate flaw, and two stars which simply remain un-recovered. For the 4251 recovered stars, 2693 have coordinates based on Hipparcos positions, 1549 have coordinates based on 2MASS data, and 9 have positions from other astrometric sources. All positions have been calculated at epoch 2000 using proper motions from the literature, which are also given here.Comment: accepted to PASP, Full version of Table 1 available electronicall

    Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt

    Get PDF
    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R∗_* = 0.9058±\pm0.0190 R\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863±\pm0.043 M\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95+/-0.19 AU, which is outside the orbit of all three planets and its asteroid belt.Comment: 5 pages, 3 figures, accepted to Ap
    • …
    corecore