10,718 research outputs found

    Experimental investigation of the cornering characteristics of 18 by 5.5, type 7, aircraft tires with different tread patterns

    Get PDF
    The characteristics, which include the cornering-force and drag-force friction coefficients and self-alining torque, were obtained on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 12 deg and at ground speeds from approximately 5 to 90 knots. The results indicate that a tread pattern with pinholes in the ribs reduces the tire cornering capability at high yaw angles on a damp surface but improves cornering on a dry surface. A tread pattern which has transverse grooves across the entire width of the tread improves the tire cornering performance slightly at high speeds on the flooded runway surface. The cornering capability of all the tires is degraded at high ground speeds by thin film lubrication and/or tire hydroplaning effects. Alterations to the conventional tread pattern provide only marginal improvements in the tire cornering capability which suggests that runway surface treatments may be a more effective way of improving aircraft ground performance during wet operations

    Effect of ultrasound on the setting characteristics of glass ionomer cements studied by Fourier Transform Infrared Spectroscopy

    Get PDF
    Objective: To investigate the effect of ultrasound (US) application on the setting of glass ionomer cement (GIC) by using Attenuated Total Reflectance Fourier Transform Infrared (ATR/FTIR) spectrometer. Methods: Two conventional GICs, Fuji IX Fast and Ketac Molar were studied. US application was started at 30 s or 40 s after mixing and was applied for times between 15 and 55 s on samples of two different thicknesses. The samples were analysed using ATR/FTIR.Results: US accelerated the curing process in both cements, US needed to be applied for more than 15 s. Both Fuji IX and Ketac Molar showed increased setting on increasing the US application duration from 15 s to 55 s. Increased setting of the GICs was produced when US application started 40 s after mixing rather than 30 s after mixing. Conclusions: The significant findings of the study include that US application accelerated the setting processes, by accelerating the formation of the acid salts. The salt formation increased with increase time of US application. The effect of application of US to setting GICs is influenced by time of the start of application of the US. The effects appear to material specific, with Ketac Molar showing a greater effect than Fuji IX

    Inter-sensory Judgments of Signal Duration

    Get PDF
    Intersensory discrimination of signal duration using visual and auditory signal

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Late stage kinetics for various wicking and spreading problems

    Full text link
    The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and on a hydrophilic strip, is re-examined. The length of a droplet of volume Omega spreading in a wedge after a time t is predicted to scale as Omega^(1/5) * t^(2/5), and the height profile is predicted to be a parabola in the distance along the wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is predicted to scale as Omega^(1/6) * t^(1/3), provided the liquid is completely contained within the grooves. A number of other results are also obtained.Comment: 5 pages, 2 figures, RevTeX

    The use of total simulator training in transitioning air-carrier pilots: A field evaluation

    Get PDF
    A field study was conducted in which the performance of air carrier transitioning pilots who had landing training in a landing maneuver approved simulator was compared with the performance of pilots who had landing training in the aircraft. Forty-eight trainees transitioning to the B-727 aircraft and eighty-seven trainees transitioning to the DC-10 were included in the study. The study results in terms of both objectively measured performance indicants and observer and check-pilot ratings did not demonstrate a clear distinction between the two training groups. The results suggest that, for these highly skilled transitioning pilots, a separate training module in the aircraft may be of dubious value

    Bioactive ceramic-reinforced composites for bone augmentation

    Get PDF
    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed

    Low-energy electron scattering by tetrahydrofuran

    Get PDF
    Cross sections for elastic scattering of low-energy electrons by tetrahydrofuran, a prototype for the furanose ring found in the backbone of DNA, have been measured and calculated over a wide energy range, with an emphasis on energies below 6 eV, where previous data are scarce. The measurements employ a thin-aperture version of the relative-flow method, while the calculations employ the Schwinger multichannel method with an extensive treatment of polarization effects. Comparisons with earlier results, both experimental and theoretical, are presented and discussed. A proper accounting for the strong permanent electric dipole of tetrahydrofuran is found to be essential to obtaining reliable cross sections, especially at energies below 5 eV

    Current distribution in a parallel configuration superconducting strip-line detector

    Get PDF
    Superconducting detectors based on parallel microscopic strip-lines are promising candidates for single molecule detection in time-of-flight mass spectrometry. The device physics of this configuration is complex. In this letter, we employ nano-optical techniques to study the variation of current density, count rate, and pulse amplitude transversely across the parallel strip device. Using the phenomenological London theory, we are able to correlate our results to a non-uniform current distribution between the strips, governed by the London magnetic penetration depth. This fresh perspective convincingly explains anomalous behaviour in large area parallel superconducting strip-line detectors reported in previous studies

    Evolution of Salmonella within Hosts

    Get PDF
    Within-host evolution has resulted in thousands of variants of Salmonella that exhibit remarkable diversity in host range and disease outcome, from broad host range to exquisite host restriction, causing gastroenteritis to disseminated disease such as typhoid fever. Within-host evolution is a continuing process driven by genomic variation that occurs during each infection, potentiating adaptation to a new niche resulting from changes in animal husbandry, the use of antimicrobials, and emergence of immune compromised populations. We discuss key advances in our understanding of the evolution of Salmonella within the host, inferred from (i) the process of host adaptation of Salmonella pathovars in the past, and (ii) direct observation of the generation of variation and selection of beneficial traits during single infections
    corecore