1,795 research outputs found

    Are lepton flavor mixings in the democratic mass matrix stable against quantum corrections?

    Get PDF
    We investigate whether the lepton flavor mixing angles in the so-called democratic type of mass matrix are stable against quantum corrections or not in the minimal supersymmetric standard model with dimension five operator which induces neutrino mass matrix. By taking simple breaking patterns of S3L×S3RS_3{}_L \times S_3{}_R or O(3)L×O(3)RO(3)_L \times O(3)_R flavor symmetries and the scale where democratic textures are induced as O(1013)O(10^{13}) GeV, we find that the stability of the lepton flavor mixing angles in the democratic type of mass matrix against quantum corrections depends on the solar neutrino solutions. The maximal flavor mixing of the vacuum oscillation solution is spoiled by the quantum corrections in the experimental allowed region of tanβ\tan \beta. The large angle MSW solution is spoiled by the quantum corrections in the region of tanβ>10\tan \beta > 10. The condition of tanβ10\tan \beta \leq 10 is needed in order to obtain the suitable mass squared difference of the small angle MSW solution. These strong constraints must be regarded for the model building of the democratic type of mass matrixComment: 12pages,LaTe

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Seasonal cycles of ozone and oxidized nitrogen species in northeast Asia - 2:A model analysis of the roles of chemistry and transport

    Get PDF
    [1] The dominant factors controlling the seasonal variations of ozone (O-3) and three major oxidized nitrogen species, peroxyacetyl nitrate (PAN), nitrogen oxides (NOx), and nitric acid (HNO3), in northeast Asia are investigated by using a three-dimensional global chemical transport model to analyze surface observations made at Rishiri Island, a remote island in northern Japan. The model was evaluated by comparing with observed seasonal variations, and with the relationships between O-3, CO, and PAN. We show that the model reproduces the chemical environment at Rishiri Island reasonably well, and that the seasonal cycles of O-3, CO, NOy species, and VOCs are well predicted. The impact of local emissions on some of these constituents is significant, but is not the dominant factor affecting the seasonal cycles. The seasonal roles of chemistry and transport in controlling O-3 and PAN are revealed by examining production/ destruction and import/ export/deposition fluxes in the boundary layer over the Rishiri region. For O-3, transport plays a key role throughout the year, and the regional photochemical contribution is at most 10% in summer. For PAN, in contrast, transport dominates in winter, while in-situ chemistry contributes as much as 75% in summer. It is suggested that the relative contribution of transport and in-situ chemistry is significantly different for O-3 and PAN, but that the wintertime dominance of transport due to the long chemical lifetimes of these species is sufficient to drive the seasonal cycles of springtime maximum and summertime minimum characteristic of remote sites

    Unitary representations of the W3-algebra with c ≥ 2

    Get PDF
    We prove unitarity of the vacuum representation of the W_3-algebra for all values of the central charge c ≥ 2.We do it by modifying the free field realization of Fateev and Zamolodchikov resulting in a representation which, by a nontrivial argument, can be shown to be unitary on a certain invariant subspace, although it is not unitary on the full space of the two currents needed for the construction. These vacuum representations give rise to simple unitary vertex operator algebras. We also construct explicitly unitary representations for many positive lowest weight values. Taking into account the known form of the Kac determinants, we then completely clarify the question of unitarity of the irreducible lowest weight representations of the W_3-algebra in the 2 ≤ c ≤ 98 region

    Embedding Phenomenological Quark-Lepton Mass Matrices into SU(5) Gauge Models

    Full text link
    We construct phenomenological quark-lepton mass matrices based on S3_3 permutation symmetry in a manner fully compatible with SU(5) grand unification. The Higgs particles we need are {\bf 5}, {\bf 45} and their conjugates. The model gives a charge -1/3 quark vs charged lepton mass relation, and also a good fit to mass-mixing relations for the quark sector, as well as an attractive mixing pattern for the lepton sector, explaining a large mixing angle between νμ\nu_\mu and ντ\nu_\tau, and either large or small νeνμ\nu_e-\nu_\mu mixing angle, depending on the choice of couplings, consistent with the currently accepted solutions to the solar neutrino problem.Comment: 12 pages, LaTex file, no figure

    Future asymptotic expansions of Bianchi VIII vacuum metrics

    Get PDF
    Bianchi VIII vacuum solutions to Einstein's equations are causally geodesically complete to the future, given an appropriate time orientation, and the objective of this article is to analyze the asymptotic behaviour of solutions in this time direction. For the Bianchi class A spacetimes, there is a formulation of the field equations that was presented in an article by Wainwright and Hsu, and in a previous article we analyzed the asymptotic behaviour of solutions in these variables. One objective of this paper is to give an asymptotic expansion for the metric. Furthermore, we relate this expansion to the topology of the compactified spatial hypersurfaces of homogeneity. The compactified spatial hypersurfaces have the topology of Seifert fibred spaces and we prove that in the case of NUT Bianchi VIII spacetimes, the length of a circle fibre converges to a positive constant but that in the case of general Bianchi VIII solutions, the length tends to infinity at a rate we determine.Comment: 50 pages, no figures. Erronous definition of Seifert fibred spaces correcte

    Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations

    Get PDF
    Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0–4 and 0–12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12–14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations
    corecore