18 research outputs found

    Cellular landscaping of COVID-19 and gynaecological cancers: An infrequent correlation

    Get PDF
    COVID-19 resulted in a mortality rate of 3-6% caused by SARS-CoV-2 and its variant leading to unprecedented consequences of acute respiratory distress septic shock and multiorgan failure. In such a situation, evaluation, diagnosis, treatment, and care for cancer patients are difficult tasks faced by medical staff. Moreover, patients with gynaecological cancer appear to be more prone to severe infection and mortality from COVID-19 due to immunosuppression by chemotherapy and coexisting medical disorders. To deal with such a circumtances oncologists have been obliged to reconsider the entire diagnostic, treatment, and management approach. This review will provide and discuss the molecular link with gynaecological cancer under COVID-19 infection, providing a novel bilateral relationship between the two infections. Moreover, the authors have provided insights to discuss the pathobiology of COVID-19 in gynaecological cancer and their risks associated with such comorbidity. Furthermore, we have depicted the overall impact of host immunity along with guidelines for the treatment of patients with gynaecological cancer under COVID-19 infection. We have also discussed the feasible scope for the management of COVID-19 and gynaecological cancer

    Proximitized spin-phonon coupling in topological insulator due to two-dimensional antiferromagnet

    Full text link
    Induced magnetic order in a topological insulator (TI) can be realized either by depositing magnetic adatoms on the surface of a TI or engineering the interface with epitaxial thin film or stacked assembly of two-dimensional (2D) van der Waals (vdW) materials. Herein, we report the observation of spin-phonon coupling in the otherwise non-magnetic TI Bi2_\mathrm{2}Te3_\mathrm{3}, due to the proximity of FePS3_\mathrm{3} (an antiferromagnet (AFM), TNT_\mathrm{N} \sim 120 K), in a vdW heterostructure framework. Temperature-dependent Raman spectroscopic studies reveal deviation from the usual phonon anharmonicity at/below 60 K in the peak position (self-energy) and linewidth (lifetime) of the characteristic phonon modes of Bi2_{2}Te3_{3} (106 cm1^{-1} and 138 cm1^{-1}) in the stacked heterostructure. The Ginzburg-Landau (GL) formalism, where the respective phonon frequencies of Bi2_{2}Te3_{3} couple to phonons of similar frequencies of FePS3_3 in the AFM phase, has been adopted to understand the origin of the hybrid magneto-elastic modes. At the same time, the reduction of characteristic TNT_\mathrm{N} of FePS3_3 from 120 K in isolated flakes to 65 K in the heterostructure, possibly due to the interfacial strain, which leads to smaller Fe-S-Fe bond angles as corroborated by computational studies using density functional theory (DFT). Besides, our data suggest a double softening of phonon modes of Bi2_\mathrm{2}Te3_\mathrm{3} (at 30 K and 60 K), which in turn, demonstrates Raman scattering as a possible probe for delineating the magnetic ordering in bulk and surface of a hybrid topological insulator

    Characterizing multi-threaded applications based on shared-resource contention

    No full text
    Abstract-For higher processing and computing power, chip multiprocessors (CMPs) have become the new mainstream architecture. This shift to CMPs has created many challenges for fully utilizing the power of multiple execution cores. One of these challenges is managing contention for shared resources. Most of the recent research address contention for shared resources by single-threaded applications. However, as CMPs scale up to many cores, the trend of application design has shifted towards multi-threaded programming and new parallel models to fully utilize the underlying hardware. There are differences between how single-and multi-threaded applications contend for shared resources. Therefore, to develop approaches to reduce shared resource contention for emerging multi-threaded applications, it is crucial to understand how their performances are affected by contention for a particular shared resource. In this research, we propose and evaluate a general methodology for characterizing multi-threaded applications by determining the effect of shared-resource contention on performance. To demonstrate the methodology, we characterize the applications in the widely used PARSEC benchmark suite for shared-memory resource contention. The characterization reveals several interesting aspects of the benchmark suite. Three of twelve PARSEC benchmarks exhibit no contention for cache resources. Nine of the benchmarks exhibit contention for the L2-cache. Of these nine, only three exhibit contention between their own threads-most contention is because of competition with a co-runner. Interestingly, contention for the Front Side Bus is a major factor with all but two of the benchmarks and degrades performance by more than 11%

    Characterizing multi-threaded applications based on shared-resource contention

    No full text
    Abstract—For higher processing and computing power, chip multiprocessors (CMPs) have become the new mainstream architecture. This shift to CMPs has created many challenges for fully utilizing the power of multiple execution cores. One of these challenges is managing contention for shared resources. Most of the recent research address contention for shared resources by single-threaded applications. However, as CMPs scale up to many cores, the trend of application design has shifted towards multi-threaded programming and new parallel models to fully utilize the underlying hardware. There are differences between how single- and multi-threaded applications contend for shared resources. Therefore, to develop approaches to reduce shared resource contention for emerging multi-threaded applications, it is crucial to understand how their performances are affected by contention for a particular shared resource. In this research, we propose and evaluate a general methodology for characterizing multi-threaded applications by determining the effect of shared-resource contention on performance. To demonstrate the methodology, we characterize the applications in the widely used PARSEC benchmark suite for shared-memory resource contention. The characterization reveals several interesting aspects of the benchmark suite. Three of twelve PARSEC benchmarks exhibit no contention for cache resources. Nine of the benchmarks exhibit contention for the L2-cache. Of these nine, only three exhibit contention between their own threads–most contention is because of competition with a co-runner. Interestingly, contention for the Front Side Bus is a major factor with all but two of the benchmarks and degrades performance by more than 11%. I

    ReQoS

    No full text

    Cellular landscaping of cisplatin resistance in cervical cancer

    Get PDF
    Funding Information: This research was funded by “Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias” (project ProID2020010134 ), and CajaCanarias (project 2019SP43 ). The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Publisher Copyright: © 2022 The AuthorsCervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.Peer reviewe

    Nanotheranostics to target antibiotic-resistant bacteria: Strategies and applications

    No full text
    Various health agencies, such as the European Medical Agency (EMA), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO), timely cited the upsurge of antibiotic resistance as a severe threat to the public health and global economy. Importantly, there is a rise in nosocomial infections among covid-19 patients and in-hospitalized patients with the delineating disorder. Most of nosocomial infections are related to the bacteria residing in biofilm, which are commonly formed on material surfaces. In biofilms, microcolonies of various bacteria live in syntropy; therefore, their infections require a higher antibiotic dosage or cocktail of broad-spectrum antibiotics, aggravating the severity of antibiotic resistance. Notably, the lack of intrinsic antibacterial properties in commercial-grade materials desires to develop newer functionalized materials to prevent biofilm formation on their surfaces. To devise newer strategies, materials prepared at the nanoscale demonstrated reasonable antibacterial properties or enhanced the activity of antimicrobial agents (that are encapsulated/chemically functionalized onto the material surface). In this manuscript, we compiled such nanosized materials, specifying their role in targeting specific strains of bacteria. We also enlisted the examples of nanomaterials, nanodevice, nanomachines, nano-camouflaging, and nano-antibiotics for bactericidal activity and their possible clinical implications
    corecore