34 research outputs found
A Phosphoinositide 3-Kinase/Phospholipase Cgamma1 Pathway Regulates Fibroblast Growth Factor-Induced Capillary Tube Formation
Background: The fibroblast growth factors (FGFs) are key regulators of embryonic development, tissue homeostasis and tumour angiogenesis. Binding of FGFs to their receptor(s) results in activation of several intracellular signalling cascades including phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)gamma 1. Here we investigated the basic FGF (FGF-2)-mediated activation of these enzymes in human umbilical vein endothelial cells (HUVECs) and defined their role in FGF-2-dependent cellular functions.Methodology/Principal Findings: We show that FGF-2 activates PLC gamma 1 in HUVECs measured by analysis of total inositol phosphates production upon metabolic labelling of cells and intracellular calcium increase. We further demonstrate that FGF-2 activates PI3K, assessed by analysing accumulation of its lipid product phosphatidylinositol-3,4,5-P-3 using TLC and confocal microscopy analysis. PI3K activity is required for FGF-2-induced PLC gamma 1 activation and the PI3K/PLC gamma 1 pathway is involved in FGF-2-dependent cell migration, determined using Transwell assay, and in FGF-2-induced capillary tube formation (tubulogenesis assays in vitro). Finally we show that PI3K-dependent PLC gamma 1 activation regulates FGF-2-mediated phosphorylation of Akt at its residue Ser473, determined by Western blotting analysis. This occurs through protein kinase C (PKC)alpha activation since dowregulation of PKC alpha expression using specific siRNA or blockade of its activity using chemical inhibition affects the FGF-2-dependent Ser473 Akt phosphorylation. Furthermore inhibition of PKC alpha blocks FGF-2-dependent cell migration.Conclusion/Significance: These data elucidate the role of PLC gamma 1 in FGF-2 signalling in HUVECs demonstrating its key role in FGF-2-dependent tubulogenesis. Furthermore these data unveil a novel role for PLC gamma 1 as a mediator of PI3K-dependent Akt activation and as a novel key regulator of different Akt-dependent processes
Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119
The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensabl
Are we even close? Five years marine litter ingestion monitoring in loggerhead turtles along Italian coast reveals how far we are from the Good Environmental Status
The loggerhead sea turtle Caretta caretta has been chosen as bioindicator to monitor the amount of litter ingested by marine animals within the European Marine Strategy Framework Directive and the Barcelona Regional Sea Convention. European Member States and Contracting Parties are committed to achieve the Good Environmental Status (GES), which is reached when the quantity of ingested litter does not adversely affect the health of the species concerned. Although the monitoring strategy has been outlined for more than a decade, to date no threshold values have been adopted to verify GES achievement. After five years of extensive monitoring along the Italian coasts, this study evaluates the suitability of five different GES scenarios and proposes a new threshold value (i.e., "there should be less than 33% of sea turtles having more than 0.05 g of ingested plastic in the GI") for its implementation in the European seas and the Mediterranean basin
Novel roles for class II Phosphoinositide 3-Kinase C2 beta in signalling pathways involved in prostate cancer cell invasion
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2a, ß and ?) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2ß regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2ß are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2ß but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2ß and they further identify this enzyme as a key regulator of PCa cell migration and invasion
Recommended from our members
Profiling the eicosanoid networks that underlie the anti- and pro-thrombotic effects of aspirin
Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2, a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX- 1-ko mice produced similar eicosanoid profiles in vitro: e.g. formation of TxA2, prostaglandin (PG) F2, 11-HETE and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less prothrombotic TxA2 and PGE2. Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen anti-thrombotic protection
A novel genetic variant in PTGS1 affects N-glycosylation of cyclooxygenase-1 causing a dominant-negative effect on platelet function and bleeding diathesis.
During platelet activation, arachidonic acid (AA) is released from membrane phospholipids and metabolized to thromboxane A2 (TXA2) through the actions of cyclooxygenase-1 (COX-1) and TXA2 synthase. Note, TXA2 binds to the platelet TXA2 receptor, causing shape change, secretion and platelet aggregation.1 Also, COX-1 (599aa; 70 kDa) has cyclooxygenase and peroxidase activities and it is functionally active as a homodimer, with each COX-1 monomer consisting of four highly conserved domains: an N-terminal signal peptide, a dimerization domain, a membrane-binding domain (MBD) and a large C-terminal catalytic domain2 (Figure 1A). Irreversible COX-1 inhibition by aspirin is a widely established anti-platelet therapy in cardiovascular disease.Fundación Mutua Madrileña, Grant/Award Number: AP172142019; Fundación Séneca, Grant/Award Number: 19873/GERM/15; Gerencia Regional de Salud, Grant/Award Numbers: 1647/A/17, 2061A/19; Instituto de Salud Carlos III (ISCIII) & Feder, Grant/Award Numbers: CB15/00055, PI17/01966, PI18/00598, PI20/00926, PI17/01311; Junta de Castilla y León; British Heart Foundation, Grant/Award Number: PG/17/40/33028; Ayuda a Grupos de Trabajo en Patología Hemorrágica; Premio López Borrasca 2019; Sociedad Española de Trombosis y Hemostasia
Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation
Phosphatidylinositol-3-phosphate (PtdIns-3-P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3-kinase (PI 3-K) and the small GTP-binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns-3-P in insulin- responsive cells. The insulin-mediated formation of PtdIns-3-P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns-3-P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns-3-P is specifically produced downstream from insulin-mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns-3-P and shed light on some aspects of insulin signalling so far not completely understood