58,519 research outputs found

    Indirect exchange of magnetic impurities in zigzag graphene ribbon

    Full text link
    We use quantum Monte Carlo method to study the indirect coupling between two magnetic impurities on the zigzag edge of graphene ribbon, with respect to the chemical potential Ό\mu. We find that the spin-spin correlation between two adatoms located on the nearest sites in the zigzag edge are drastically suppressed around the zero-energy. As we switch the system away from half-filling, the antiferromagnetic correlation is first enhanced and then decreased. If the two adatoms are adsorbed on the sites belonging to the same sublattice, we find similar behavior of spin-spin correlation except for a crossover from ferromagnetic to antiferromagentic correlation in the vicinity of zero-energy. We also calculated the weight of different components of d-electron wave function and local magnet moment for various values of parameters, and all the results are consistent with those of spin-spin correlation between two magnetic impurities.Comment: 3 pages, 4 figures, conference proceedin

    Comparing two financial crises: the case of Hong Kong real estate markets

    Get PDF
    Hong Kong is no stranger to bubbles or crisis. During the Asian Financial Crisis(AFC), the Hong Kong housing price index drops more than 50% in less than a year. The same market then experiences the Internet Bubble, the SARS attack, and recently the Global Financial Crisis (GFC). This paper attempts to provide some “stylized facts” of the real estate markets and the macroeconomy, and follow the event-study methodology to examine whether the markets behave differently in the AFC and GFC, and discuss the possible linkage to the change in government policies (“learning effect”) and the flow of Chinese consumers and investors to Hong Kong (“China factor”).regime switching, structural change, small open economy, bounded rationality, banking policy

    Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys

    Full text link
    Gravitational lensing effects arise from the light ray deflection by all of the mass distribution along the line of sight. It is then expected that weak lensing cluster surveys can provide us true mass-selected cluster samples. With numerical simulations, we analyze the correspondence between peaks in the lensing convergence Îș\kappa-map and dark matter halos. Particularly we emphasize the difference between the peak Îș\kappa value expected from a dark matter halo modeled as an isolated and spherical one, which exhibits a one-to-one correspondence with the halo mass at a given redshift, and that of the associated Îș\kappa-peak from simulations. For halos with the same expected Îș\kappa, their corresponding peak signals in the Îș\kappa-map present a wide dispersion. At an angular smoothing scale of ΞG=1arcmin\theta_G=1\hbox{arcmin}, our study shows that for relatively large clusters, the complex mass distribution of individual clusters is the main reason for the dispersion. The projection effect of uncorrelated structures does not play significant roles. The triaxiality of dark matter halos accounts for a large part of the dispersion, especially for the tail at high Îș\kappa side. Thus lensing-selected clusters are not really mass-selected. (abridged)Comment: ApJ accepte

    A non-dispersive Raman D-band activated by well-ordered interlayer interactions in rotationally stacked bi-layer Graphene

    Full text link
    Raman measurements on monolayer graphene folded back upon itself as an ordered but skew-stacked bilayer (i.e. with interlayer rotation) presents new mechanism for Raman scattering in sp2 carbons that arises in systems that lack coherent AB interlayer stacking. Although the parent monolayer does not exhibit a D-band, the interior of the skewed bilayer produces a strong two-peak Raman feature near 1350 cm-1; one of these peaks is non-dispersive, unlike all previously observed D-band features in sp2 carbons. Within a double-resonant model of Raman scattering, these unusual features are consistent with a skewed bilayer coupling, wherein one layer imposes a weak but well-ordered perturbation on the other. The discrete Fourier structure of the rotated interlayer interaction potential explains the unusual non-dispersive peak near 1350 cm-1

    Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Get PDF
    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences

    A new model for the double well potential

    Full text link
    A new model for the double well potential is presented in the paper. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model have many merits and may be used in the double well problem.Comment: 3pages, 3figure
    • 

    corecore