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ABSTRACT

We consider the vibration of a non-conducting liquid drop endowed with a
surface charge, in supplement to the well-known case of a conducting liquid
drop studied by Lord Rayleigh in the last century. It is assumed that there
is no charge conduction except by hydrodynamical transport due to the flow
motion. It is found that the surfaca flow is of such a form that the charge
again maintains an electrostatic equipotential at the surface of the drop at
all instants of the vibrational motion, and the same Rayleigh result is ob-
tained. Thus, the Rayleigh result {s applicable to more general classes of
liquid drops, irrespective of the conductivity of the liquid in these two
limitsa.

INTRODUCTION

) The vibrational frequency of a charged liquid drop under the restoring
force of its own surface temsion was first derived by Lord Rayleigh (1) about
a hundred years ago. The case considered was, in Lord Rayleigh's own words,
for "liquid conducting masses charged with electricity". Implicit in the as~
sumption of a conducting mass was that the dielectric relaxation time was much
shorter than the mechanical vibrational period so that the charge could always
redistribute itself to maintain an equipotential surface at the surface of the
drop (see, for example, the re-derivation of Lord Rayleigh's result by
Hendricks and Schneider (2)). Recent tests of Rayleigh's relation for a
charged water drop indicated good agreement with experimental measure-

ments (3,4).

It 18 of interest to study the influence of the conductivity of the
liquid on the wibrational frequency. In the case of water, conductivity in-
creages with the degree of salinity; one wishes to know whether the
vibrational frequency may depend on the degree of purity of water under con-
sideration. As
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the vibrational frequencies have been used to estimate the drop size and de-
gree of electrification of water drops in the atmosphere by means of the back~
scattering effect on radar (5), such a question is of practical interest. On
the other hand, there are also insulating liquids which can be readily
charged (6). For these liquids, the dielectric relaxation time can be large
compared to the mechanical vibrational period. One would be interested to see
if the Rayleigh relation needs modification which may have some bearing on the
electrohydrodynamical spraying process studied by many authors (6,7,8).

We consider a non~viscous liquid drop endowed with a surface charge. The
charge is assumed to be uniformly distributed when the drop assumes its equi-
1ibrium spherical shape. We study the case in which the charge element is not
free to move except to follow the motion of the surface element in which it
resides. We shall see that this motion of the charge in the liquid drop re-
sults again in an equipotential surface at the surface of the drop at any in-
stant of the vibrational motion, even though the charge is not free and moves
by hydrodynamical transport only. Thus, surprisingly enough, the vibrational
frequency of a charged liquid drop turns out to be independent of the con-
ductivity of the liquid in these two limits!

HYDRODYNAMICAL FLOW AND VIBRATIONAL FREQUENCY

The starting point of the present discussion is the Euler equation for a
fluid element in the interior

du &
ag-wkﬂ W

where u is the velocity characterizing the motion of the fluid element, oy the
mass density, Sp the deviation of pressure from the equilibrium value. We
linearize the Euler equation by assuming the amplitude €, to be small, A
normal mode is specified by describing the sharp surface as

{wt
r=R +ece Ym(e,w (2)

where R, is the radius of the liquid drop in equilibrium and Y, (9,4) is a

spherical harmonic and w gives the frequency of the vibrational motion. We
further assume that the mass is incompressible and the density is uniform.

Thus, from the equation of continuity, we have

Veu = 0. )

This condition, together with the solenoidal nature of the restoring force
vector leads to the important implication that § is purely poloidal
(Chandrasekhar (9)) (which means that U can be written in the form

T = Vx[V x (a/r)], where ¢ is a scalar function). From this, the mathe-
matical analysis can be considerably simplified. In spherical coordinates,
the various components of o (for the poloidal solution) are:



81

- oot 2(2+1) ‘
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)4
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where U(r) is some function to be determined by the boundary conditions.

Taking the divergence of Eq. (1), we have, from Eq. (3),

72 [82] . o, (5)
%t

A golution to this Laplace equation satisfying the boundary condition at the
origin is

iwt

sp/oy = (#41) Tr'T, (8,4) (6

where Il is a conatant to be determined.

Replacing each side of Eq. (1) by its defining function as in Egs. (4)
and (6), we have

2+1
iw U(r) €, IIO r . N

Thus, the radial'componenc of the velocity is
c eimt:

w == I 2(a+) " Y NCHON ®

There are two boundary conditions to be satisfied, First, from the re-
quirement of consistency between the radial component of the velocity (Eq. (8))
and the form of the boundary (Eq. (2)), we have

2 El

w = R(241) 1 R 9

The second boundary condition requires the balance of pressure at the
boundary as arising from surface tension and the electrostatic stress. For the
latter quantity, it is necessary to know how the charge redistributes itself.
In a conducting liquid, the charge is free to move to maintain an equipotential
at the surface of the drop. This was the case considered by Lord Rayleigh. On
the opposite extreme, suppose the conductivity of the liquid is such that the
charge cannot move freely, them, a surface charge element must follow the
motion of the surface element in which it resides. What will be the instan-
taneous charge distribution?
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It is easy to follow the hydrodynamics of any fluid element. From Eqs.
(4), (7) and (9), we know that a fluid element at (r 8 ,4) ) is mapped into
(r,6,4) by

=1
it r
(T =T, tee Rz_l Yzm(""” (10a)
' [}
R T w7 R=2 3Y. (8,9)
fwt m*?
4 8= 0, tee 1 a0 (10b)
o
-2 3Y, (8,4)
- jot ¢ 2m*?
om0yt e L simsg ' (10c)

o

A surface element at point (R 6 ,¢ ) goes into another surface element at
point (R,0,¢) as follaws

int
R=B +ce' v, (0,6) (11a)
iwt
0= 90 + Eoe (aYzm/ae)/mo (11b)
bmo +e eimt(aYlm/3¢)/szsine. (11c)

On assumption of no conduction except by mechanical transport via the hydro-
dynamical flow, the surface charge density p. is related to the uniform equi-

librium density pé") by Q

© & 2 sin0_ D9, )

Pq = Pq 2 TR T ¢+ Q2

where D(9,,6,)/D(8,¢) is the Jacobian of the transformation. From Eqs. (lla),
(11b) and (lic), we obtain the surface charge distribution at any instant of
the vibrational motion

(o)

iwt
pQ pQ [1+e°e

(2=1)Y,_ (8,6)/R 1. a3

This charge distribution is exactly the same if the liquid is a conducting
"1iquid (see Hendricks, et al. (2)). One therefore obtains the important result
that whether the 1iquid is ce conducting or not, the hydrodynamical transport
carries the charge so that the surface of the liquid drop is also a surface of
electrostatic equipotential as a result of the tramsport. In fact, a surface
charge in the form of Eq. (13) gives rise to a potential :

- X0 1w
Vc(r) R forr < R +ee Yy

im a4
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=1
R

iwt
and V (x) = _9..,,, kQ € X z-l-l Yz for r > R + soeim‘ Yo 15

where k is the Coulomh coupling constant (it equals (lm'e ) in the usual con-
vention) and Q is the total charge. The electric field a8 approached from the
outside 1is

e iut
el R e e v M (16)
o

The increment in pressure at the surface due to electrostatic interaction is

2 2
1 kQ kQ iwt
=p . B - — = (2~1) € e X, . an
2'Q'r 8 wR: lmRS o fm

Combining the contribution from electrostatic interaction and surface
tension (10), we have

= | (2-1) (242) —-- - (2-1) ——9—- c e th (18)
P lmpuk

From Eqs. (18), (5) and (9), we get the vibrational frequency

P.
M 1w
R te e ty -

2 )

2 _ (k1) (42T {1 - kO (19) -

3 (942)4nTR)

o
which is just the Rayleigh result.
DISCUSSIONS

We have shown that in the vibration of a charged non-viscous liquid drop,
the hydrodynamical transport of the surface charge results again in an
aquipotential surface at the surface of the drop at any instant. Thus, if the
liquid is non-conducting in the sense of having a large dielectric relaxation
time, the behavior of the surface charge is the same as in a conducting liquid.
One concludes that Rayleigh's result is more general than it was formulated.

Our discussion hag been limited to the inviscid case for which a potential
flow i3 possible. The fact that an electrostatic potential is again maintained
is probably intimately related to the potential flow of the fluid. Some dif-
ferences in the vibrational behavior due to differences in conductivity may be
expected in the vibration of a viscous charged liquid drop for which the flow
becomes rotational and the vorticities reside mostly at the surface. In a
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conducting liquid, a charge element is free to move to the surface even though
the surface fluid element may flow inside the surface. For a non-conducting
liquid, the motion of the charge toward the surface may not be fast enough,
and the electrostatic stress is modified as a consequence. As a viscous con-
ducting charged liquid drop follows the Chandrasekhar equation (9,11) based on
an instantaneous surface charge redistribution, the behavior of a viscous non-
conducting charged liquid drop will deviate from the Chandrasekhar equation.
This may be checked experimentally.
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